




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2.2.1直線與平面平行的判定《數學》(必修)普通高中課程標準實驗教科書2
直線與平面有哪幾種位置關系?按照什么標準分類的?沒有公共點
課堂教學直線與平面平行溫故知新a
a
在平面內aa//平行Aa
a∩=A相交有無數個公共點有且只有一個公共點
在開門的過程中,門扇轉動的一邊與門框所在的平面給人以平行的印象.感受生活中線面平行的例子:球場地面感受生活中線面平行的例子:同學們根據你日常生活中的觀察,你能舉出直線與平面平行的具體事例嗎?
怎樣判定直線與平面平行呢?
根據定義,判定直線與平面是否平行,只需判定直線與平面有沒有公共點.但是,直線無限延長,平面無限延展,要保證直線與平面沒有公共點容易嗎?a
課堂教學直線與平面平行問題與思考在梯形轉動過程中:動手做一做ADBC直線AD在桌面所在的平面(外/內)直線BC在桌面所在的平面
直線AD與BC始終是外內平行的
平面外有直線平行于平面內的直線.(1)這兩條直線共面嗎?(2)直線與平面相交嗎?共面不可能相交一.直線與平面平行
探究新知識
課堂教學直線與平面平行b文字語言定理:平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行.2、線//線(平面)線//面(空間)二.直線與平面平行的判定定理
探究新知識
課堂教學直線與平面平行圖形語言符號語言注意事項:1、定理三個條件缺一不可3、定理告訴我們:要證線面平行,只要在面內找(作)一條線,使線線平行。
課堂練習直線與平面平行D1.下列說法正確的是(
)A.直線l平行于平面α內的無數條直線,則l∥αB.若直線aα,bα則a∥αC.若直線a∥b,bα則a∥αD.若直線a∥b,bα直線a就平行于平面α內的無數條直線
2.如圖,長方體中,
(1)與AB平行的平面是
;
(2)與平面ABCD平行的直線是
;平面平面
課堂練習直線與平面平行
例1求證:空間四邊形相鄰兩邊中點的連線平行于經過另外兩邊所在的平面.
已知:空間四邊形ABCD中,E,F分別AB,AD的中點.求證:EF//平面BCD.分析:
例題分析直線與平面平行連結BDAEFBDC例1求證:空間四邊形相鄰兩邊中點的連線平行于經過另外兩邊所在的平面.證明:如圖,連接BD。在△ABD中,E,F分別為AB,AD的中點,∴EF∥BD,∴EF∥平面BCD。BD平面BCD,又EF平面BCD,AEFBDC1.如圖,在空間四邊形ABCD中,E、F分別為AB、AD上的點,若,則EF與平面BCD的位置關系是_____________.
EF//平面BCD變式1:ABCDEF
解題反思直線與平面平行解題反思:通過本題的解答,你可以總結出什么解題思想和方法?反思2:要證明直線與平面平行可以運用判定定理;線線平行線面平行反思1:語言的轉化(翻譯)文字語言圖形語言符號語言反思3:運用定理的關鍵是找(作)平行線找(作)平行線又經常會用到三角形中位線定理反思4:證明過程中要寫明三個條件“線在面外、線在面內、線線平行”。隨堂練習:
1、以下命題正確的是()
A若a∥,b,則a∥b
B若a∥,b∥,則a∥b
C若a∥b,b,則a∥
D若a∥b,a∥,則b∥或b
D
分析:要證BD1//平面AEC即要在平面AEC內找一條直線與BD1平行.根據已知條件應該怎樣考慮輔助線?隨堂練習:2.如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點,試判斷BD1與平面AEC的位置關系,并說明理由。
ED1C1B1A1DCBAOED1C1B1A1DCBAO隨堂練習:
如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點,求證:BD1//平面AEC.
證明:連結BD交AC于O,連結EO.∵O為正方形ABCD的對角線的交點,∴O為BD的中點,
又∵E為DD1的中點,∴EO為的中位線∴BD1//EO.PABCDEMN3.在四棱錐P—ABCD中,底面ABCD為平行四邊形,N為PB
的中點,E為AD中點。求證:EN//平面PDC隨堂練習1.證明直線與平面平行的方法:(1)利用定義:(2)利用判定定理:2.數學思想方法:轉化的思想把空間問題平面問題線線平行線面平行直線與平面沒有公共點
課堂小結直線與平面平行3.應用判定定理判定線面平行時應注意三個條件:
(1)線在面外(2)線在面內
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《雨滴滋潤》課件
- 《華貿中心案例研究》課件
- 鐵路旅客運輸服務途中作業51課件
- 鐵路調車綜合實訓取送車輛作業課件
- 中華食材文化課件
- 中專職業形象課件設計
- 大學生職業規劃大賽《工商管理專業》生涯發展展示
- 版二手手機買賣合同樣本
- 施工項目款項結算合同
- 2025版鄭州二手房買賣合同指南
- 《安全閥培訓》課件
- 四年級語文下冊 第17課《記金華的雙龍洞》同步訓練題(含答案)(部編版)
- 國之重器:如何突破關鍵技術-筆記
- 學校直飲水施工方案
- 陽光心理-健康人生小學生心理健康主題班會課件
- 2024中考化學總復習必刷80題(第1-80題)(含解析)
- 人力資源管理測試題答案
- 《新青島版(六三制)五年級下冊科學檢測試題(含答案)》期中檢測
- DL∕T 1901-2018 水電站大壩運行安全應急預案編制導則
- 2023-2024學年貴州省黔南州八年級(下)期末數學試卷(含答案)
- 臨床重點學科驗收課件
評論
0/150
提交評論