設計英文翻譯_第1頁
設計英文翻譯_第2頁
設計英文翻譯_第3頁
設計英文翻譯_第4頁
設計英文翻譯_第5頁
已閱讀5頁,還剩22頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

StudyonthetransmissionandreflectionofstresswavesYexueLia,b,ZhemingZhuc,n,BixiongLic,JianhuiDenga,HeCollegeofWaterResource&Hydropower,SichuanUniversity,Chengdu610065,DepartmentofCivilEngineering,XiangfanUniversity,Xiangfan,Hubei441053,CollegeofArchitectureandEnvironment,SichuanUniversity,Chengdu61005,:Inordertoinvestigatethetransmissionandreflectionofstresswavesacrossjoints,afractaldamagejointmodelisdevelopedbasedonfractaldamagetheory,andtheyticalsolutionforthecoefficientsoftransmissionandreflectionofstresswavesacrossjointsisderivedfromthefractaldamagejointmodel.Thefractalgeometricalcharacteristicsofjointsurfacesareinvestigatedbyusinglaserprofilometertoscanthejointsurfaces.ThedynamicexperimentsbyusingSplitHopkinsonPressureBar(SHPB)forrockspecimenswithsinglejointareconductedtoconfirmtheyticalsolutionofthecoefficientsoftransmissionandreflection.TheSHPBexperimentalresultsofthecoefficientsagreewellwiththeyticalsolution.:StresswaveTransmissionandreflectionJointFractaldimensionDamageAsiswellknown,rocksusuallycontaindefectsordiscontinuities,suchasjoints,cracks,poresandfaults.Thesediscontinuitiesweakenrockmaterialstrengthandstabilityastheyaresubjectedtodynamicloads,suchasblastsandearthquakes,therefore,thestabilityofgeotechnicalstructures,suchastunnels,subways,dams,etc.,wouldbecontrolledbythesediscontinuities.Thedesignersofsuchgeotechnicalstructuresarerequiredtohavetheknowledgeofwavepropagationacrossjoints,andtherefore,thecorrespondingstudyontransmissionandreflectionofwavesacrossjointsissignificant.Currently,alargenumberoftheoretical,empiricalandnumericalmodelsconcerningthegeometricalandmechanicalpropertiesofjointshavebeenestablishedtostudythejointeffectsonwavepropagationandattenuation[1–8].However,ourunderstandingoftheprocessoftransmissionandreflectionofstresswavescrossingjointsisfarfromcomplete,asjointsarestillcomplexforus.Whenstresswavesencounterjoints,theywillsufferpartialreflectionandtransmission.Thecharacteristicsofreflectionandtransmissiondependonmanyfactors,suchas,jointspacing,jointorientation[9],jointwidth,jointroughness,jointstiffness,fillingmaterialinsidejoints[10,11],liquidsaturation,etc.Fortheissueofwavepropagationacrossjoints,CaiandZhao[4]haveinvestigatedtheeffectsofmultipleparallelfracturesonapparentattenuationofstresswaveinrockmasses.Fanetal.[6]havepresentedthestudyonwavepropagationandwaveattenuationinjointedrockmassesbyusingdiscreteelementmethod(DEM).GulyayevandIvanchenko[8]haveinvestigatedtheproblemaboutdynamicinctionofdiscontinuouswaveswithbetweenanisotropicelasticmedia.Perak-Nolte[12]andZhaoandCai[13]haveinvestigatedstresswavepropagationacrosslineardeformationjoints,andobtainedthecoefficientsofstresswavetransmissionandreflection.Wangetal.[14]havederivedthecoefficientsoftransmissionandreflectionofstresswavecrossingnon-linearlydeformationaljointsbyusingtherockdamagemechanicstheory[15]andstrainequivalenthypothesis,andtheresultofthecoefficientsagreedwellwiththenumericalresultspresentedbyZhaoandCai[13].Kahraman[16]hassimulatedjointsurfaceroughnessandinvestigatedtherelationbetweentheroughnessofjointsurfacesandtheparticlevelocityofstresswaves.Thesurfacesofnaturaljointsdevelopedduringalongtimeofgeologicaldigenesisarenotsmooth,andactuallytheyareveryrough.AcoefficientofjointroughnessJRC(jointroughnesscoefficient),proposedbyBamford[17]in1978,somehowcanexpresstheeffectofjointroughnessonstresswavepropagation.However,JRCisanempiricalparameter,anditcanonlyexpresstheroughnessofone-dimensionalcurveandcannotbeemployedtodescribethenaturaljointroughnesspreciselybecausethenaturaljointscontainthree-dimensionalroughsurfaces,inwhichthedimensionshouldbegreaterthan2andlessthan3.Asstresswavescrossjoints,itisverydifficulttodeterminetheanglebecausethejointsurfacesusuallyconsistofvarioussubsurfaceswithdifferentnormaldirections.Underthisscenario,itisnecessarytouseanotherparameter,fractaldimension,todescribethejointroughness.Fractaldimensionscanbeappliedtodescribingthejointroughness[18–20]anditwillbeemployedinthisstudy.Inthispaper,anattemptismadetoobtaintheyticalsolutionforthecoefficientsoftransmissionandreflectionofstresswavesacrossjoints.Thefractaltheory[21–23]combiningwithdamagemechanicstheorywillbeappliedtocharacteringthejointroughness.Thefractalgeometricalcharacteristicsofjointsurfacesareinvestigatedbyusinglaserprofilometer.Finally,byusingSplitHopkinsonPressureBar(SHPB)testingsystem,experimentalinvestigationsforthetransmissionandreflectionofstresswavesacrossasinglerockjointareconducted.TheoreticalWhenstresswavesencounterjoints,itisverydifficulttodeterminetheanglebecausethejointsurfacesusuallyareveryrough,andtherefore,theparametersofamplitudeandorientationofthetransmittedandreflectedwavescannotbedetermined.Inthefollowing,wewillinvestigatethefactualityofjointsurfacesbyfractaltheoryandderivethecoefficientsoftransmissionandreflectionofstresswavesacrossjoints.JointBasedonthefactthattheevolutionofrockdamaginghasthecharacteristicoffractal,XieandJu[18]havedefinedafractaldamagevariableω(?,ζ)thatnotonlycanexpressthedamageintrinsicmechanismtativelyintwo-dimensionalEuclideanspaces,butalsocanbeeasilyadoptedinmacro-scaledamagingysisbyusingthetheoryofdamageandfractalω(?,ζ)=1?(1?ω0)ζ(??de) where?isthedimensionofthecomplementofthedamagearea,ζisthemeasurementdeistheEuclideandimension,in2Dcaseitequals2,andin3Dcaseitis3,andω0isanominaldamagevariableandisdefinedas 00ω0S-00

whereS0isaninitialareaofazone(thenominalareainEuclideanspace),Sisthedamagedareainthezone,?istheno-damagedareainthezone,andtheirrelationisS0=S+?.UsingEsq.(1)and(2),onecanobtainthedamagevariableω(?,ζ),andthecorrespondingtheoreticalandexperimentalstudyhasbeenpresentedinreferences[18].However,forthevariableω0expressedinEq.(2),onlythedamageoccurredinsurfaceneshasbeenconsidered,andthedamagealongdepthisignored.ThiswillsomehowcauseerrorasthedamageactuallyvariesalongFig.1showsadamagedzonewithtwodifferentdamagedepths.ItcanbeseenthatifoneusesEq.(2)tocalculateω0,forthetwocases,theresultswillbethesame.However,becausethedamagedepthsaredifferent,thedamageextentsshouldbedifferenttoo.Inordertoaccurayandeffectivelydescriberockdamage,itisnecessarytousetheratioofvolumestorecetheratioofareasinEq.(2),thatisω=V=1-?

WhereV0istheinitialvolumeofazone(thenominalvolumeinEuclideanspace),Visthedamagedvolumeinthezone,?istheno-damagedvolumeinthezone,andtheirrelationisd?3).SubstitutingEq.(3)intoEq.(1),thefractaldamagevariablecanbewrittenas(note:incases,de=ω?,)=1(?

)

Accordingtothedefinitionofdamagevariables,thejointstiffness?canbeexpressedintermsofthedamagevariableω(?,ζ),as?=K0(1?ω(?,ζ)) SubstitutingEq.(4)intoEq.(5),thejointstiffnessofdamagedrockjointscanberewritten?= Fig.2showstworockspecimens;theheightforthespecimenwithjointisH,andtheheightforthespecimenwithoutjointisH-?,where?isthejointwidth.Underuniaxialcompression,thediscementsofbothspecimens(δjforthespecimenwithjoint,andδforthespecimenwithoutjoint)canbeeasilymeasured,andthedifference,δj-δ,isthejointdiscement,thus,therelationofloadsPversusjointdiscements,δj-δ,canbeobtained,andthejointnormalstiffnesscanbeCoefficientsofwavetransmissionandAsstresswavesencounterjoints,theywillsufferpartialreflectionandtransmission.Inthispaper,byusingthefractaldamagetheoryandcombiningwiththeformeryticalsolutionofwavepropagationacrossstraightjoints,thecoefficientsofwavetransmissionandreflectionacrossjointswillbederived.Fig.3showsaroughjointanditscorrespondingequivalentstraightjoint;thejointstiffnessofthestraightjointissupposedtobethesameasthatoftheroughjoint.ThepropagationofPwavesandSwavesareindependent,buttheyaregenerallymutuallyrelativewheneitherPwaveorSwavetransmittedandreflectedonjoints.Exceptforthecasethatawaveisnormallyprojectedontheinterface,thatis,normalincidence,twokindsofwavescouldgothroughuncoupledsolution.Forstresswavesobliquelytojoints,inordertomeetboundarycondition,whetherPwavesorSwavesaresuretosimultaneouslyreflectPwavesandSwaves,andtransmitPwavesandSwaves.ConsideringthecasethatonlyanePwaveonthestraightjointinterface,whichwillproducessimultaneouslyareflectedPwaveandSwave,andatransmittedPwaveandSwaveasshowninFig.3.Foreachofthesefivewaves,thereisacorrespondingwavepropagationequation,thus,therearetotallyfiveequationswhichcanbeexpressedasfollows[24]:u0=A0u1=A1expu2=A2exp[i(Kx2x+ky2y?ωt)]u3=A3exp[i(Kx3x+ky3y?ωt)]u4=A4exp

where{u0,u1,u2,u3,u4}arethediscementsinducedbythe Pwave,reflectedSwave,transmittedPwaveandtransmittedSwave,respectively,{A0,A1,A2,A3,A4}arethecorrespondingwaveamplitudes,respectively,andωandkaretheangularfrequencyandwavevector,respectively.ThediscementcomponentsinzoneIandzoneIIshowninFig.3canbeexpressed(ux)1=u0cosα1?u1cosα1+u2sinyy

)=010

sin

+

sin

+

(ux)2=u3cosα2?u4siny{(u)=usinα+ucosy

1whereα1,α2,β1andβ2aretheanglesshowninFig.3,1

2thediscementcomponentsalongxandyaxialdirection,respectively,thesubscripts1and2inEsq.(8)and(9)representzoneIandzoneII,respectively.Supposingthedeformationsinducedbythestresswavesareintheelasticrange,then,therelationbetweendiscementandstresscanbewrittenas2 =(λ+2μ)?ux+λ =μ?uy+ ( WhereμisshearmodulusAccordingtothediscementdiscontinuitymodelproposedbyPerak-Nolte[12],thestressesonthecommonboundaryofzoneIandzoneIIsatisfythefollowing(σxx)1= 11

=

2

(ux)1?(ux)2=???? y(uy1

?

=???

Where?andKyarethejointnormalstiffnessandshearstiffness,respectively.Thecoefficientsoftransmissionandreflectionaredefinedas =A1,

=

=A3,

=

WhereFR1andFR2arethereflectioncoefficientsofthereflectedPwaveandSwave,respectively,andFT1andFT2denotethetransmissioncoefficientsofthetransmittedPwaveandSwave,respectively.Asstresswavespropagateinanelasticbody,therelationoftheparameterscanbeexpressedasPλ+2μ= PSμ= Sλ=ρ(?2? Whereλ=

,νisthePoisson’sratio,CpisthePwavespeed,CsistheSwaveμistheshearmodulusandρisthedensity.FromEsp.(7)to(19),weobtainthefollowing

s1sin2α1?FR1s1sin2α1?FR2?s1cos

?2[FT1s2sin2α2+FT2?s2cos

ρ

(?p1?sin2α1s1)(1+FR1)?FR2?s1sin2β?2[FT1(?p2?sin2α2s2)

FT2?s2sin2β2]= (cosα1?FR1cosα1+FR2sinβ1)?(FT1cosα2?FT2sinβ2)?(?p1?sin2α1s1)(1+FR2)?FR2?s1sinx???? x(sinα1+FR1sinα1+FR2cosβ1)?(FT1sinα2+FT2cosβ2) s1sin2α1?FR1s1sin2α1?FR2?s2cos (i?ρ

Where?arewaveangularfrequency,andthesubscripts1and2intheaboverepresentzoneIandzoneII,respectively.Fornormalincidence,i.e.thePwaveisperpendiculartothejointsurfaces,onecanhaveα1=α2=β1=β2=0.Iftherockspropertiesbothsidesofthejointarethesame,thenthedensityofrockmassandthevelocityofstresswaveatbothsidesareidentical,thus,fromEsq.(20)to(23),weobtainthecoefficientsofthereflectedPwaveandthetransmittedPwaveas

= ,

=2?/?Z

)

)Where:Zisthewaveimpedance.SubstitutingEq.(6)intoEq.(24),weobtaintheyticalsolutionofthecoefficientsoftransmissionandreflectionasstresswavescrossjoints ?(??3)

])/(?Z)

2K0(?)ζ(??3)= (?Z) = ? ? V√1+4((K0[(VV0

ExperimentInordertovalidatethetheoreticalsolution,i.e.Eq.(25),dynamicexperimentalstudyforrockspecimenswithasinglejointbyusingSplitHopkinsPressureBar(SHPB)isconducted,andbyusingalaserprofilometer,thejointsurfaceshavebeenscanned,andthejointsurfacefractaldimensionshavebeenmeasured,andtheresultshavebeenemployedtocalculatethecoefficientsoftransmissionandreflectionofwavesacrossjoints.SHPBtestingSplitHopkinsPressureBariswidelyusedforcharacterizingdynamicresponseofengineeringmaterials.TheSHPBsystemusedinthisstudyisshowninFig.4.ThelengthsofthebarandtransmissionbaroftheSHPBarethesame,2.0m,andandthefrictionbetweentheendsofthespecimensandtheinputandoutputbars,weappliedasinglejointedspecimenwith12mminlengthand30mmindiameter.Theimpactwavesweregeneratedandpropagatedalongtheaxialdirectionsofthespecimencylinders,andperpendicularlyprojectedtothejointsurfaces,whichislocatedinthemiddleofthe12mmlongspecimen.Theobjectiveofthisexperimentalstudyistoinvestigatetheeffectofjointsurfaceconfigurationonwavereflectionandtransmission,soastovalidatethetheoreticalresultsofthecoefficientsofwavereflectionandtransmission.Inordertominimizethesideeffectoflargesticdeformationandadditionalcracking,theimpactstrikerspeedshouldbecontrolledwithinacertainrange,suchthatthesticityandcrackinginthespecimeninducedbytheimpactwerenegligible,thus,noirreversibleenergywilldissipateexceptforthediscementofjointsurfaceduringthewavepropagation.AccordingtothepreliminarySHPBtestsusingintactrockswithdifferentimpactspeed,theimpactspeedof6.8m/swasadoptedfinallyintheSHPBtests.Thewave,reflectedwaveandtransmittedwavearecollectedbysuperdynamicapparatus.Stressgaugeswereemployedinrecordingthestresswaves,andweresituatedinthemiddleoftheandtransmissionbars,respectively(seeFig.4).Inordertorecordthestresswavescontinuouslyandaccurayandtoavoidthein?uenceofpulsesreflectedfromtheandthecontactedends,thedistancebetweenthestraingaugesandtheendsofthebarsislargerthanthelengthofthestrikerbarwhichis200mminlength.SHPBspecimenpreparationandtestingRockcoreswithadiameterof30mmwerefirstdrilledfrommarbleblocks.Toavoidthewereselectedtomakerockspecimens.Bythree-pointbendingmethod,theselectedrockcoreswerefracturedintotwoparts,andthesetwopartswereadheredtogetherandbycuttingthetwoendsofthecore,a12mmlongspecimenwithajointinthemiddle,showninFig.5,wasmade.Theendsofthespecimenshavebeengroundverycarefullysuchthatthefrictionlessconditioncanbesatisfiedbeforeweinstalledthespecimenbetweenthesteelbars.Becausethespecimenlength12mmisveryshortascomparedtothebar,thestrainsonthetwoendsareapproximaythesameinaveryshorttimeinterval,whichcanmeetthehypothesisofstrainuniformity.Becausethelengthofthespecimenssatisfiestherequirementofh=√3νr,whereristheradiusofthespecimencylindersandnisthedynamicPoisson’sratiooftherock,stresswavespropagatingalongthespecimencanbeconsideredasone-dimensionalstresswave[25–27].Therefore,intheseteststhestraininsidethespecimenwasone-dimensionalanduniformelasticstrain.Basedontheelasticwavetheory,onecanexpressthehistoriesofstressσ(t),strainrateε?andstrainεwithinthespecimenasσ(t)=EA[ε(t)+ε(t)+ε ∫ε(t)= t[ε(t)?ε(t)?ε∫

l0 ε?(t)=C[ε(t)?ε(t)?ε whereA0andl0aretheinitialareaandinitiallengthofthespecimen,respectively,EandAaretheYoung’smodulusandtheareaofthebar,respectively,Cisthelongitudinalstresswavevelocityofthebar.Thetiesindicatingbythesubscripti,randtrefertothe,reflectedandtransmittedwave,respectively.ByusingtheaboveSHPBtestingsystemandthespecimens,thecurvesofstrainversustimeforthe,reflectedandtransmittedwavescanbemeasuredandtheresultscanbecollectedautomatically.Fig.6showsthreetypicalcurvesofstrainversustimeforthespecimenNo.10,No.13andforthespecimenwithoutjoint.Thecorrespondingcoefficientsoftransmissionandreflectionofstresswavesacrossthejointscanbecalculated.Fig.6showsthatbothamplitudesofthereflectedandtransmittedwavesarelessthanthoseofthewaves.TheamplitudesoftransmittedwavesinFig.6aregreaterthanthoseofthereflectedwaves,whichindicatesthatmostoftheenergyofthewavehastransmittedthejointsandonlylessenergyhasreflectedbacktothebar.Forthespecimenwithoutjoint,theamplitudeofitstransmittedwaveislargerthanthoseforthespecimenswithjoints,andtheamplitudeofitsreflectedwaveislessthanthoseforthespecimenswithjoints.Thisistobeexpected,asjointscanblockwavepropagation.FractalitymeasurementofjointAlarge-scalelaserprofilometerisappliedtoscanningtherockspecimensurfacesbeforeSHPBtests.Thescanningcapacityofthelaserprofilometerscopesupto30mmwitharesolutionof7mmandaminimumscanningincrementof7.5mm.Anadvancedsurfacemethod,non-contactsurfacemeasurementmethod,whichcanavoidcuttingordamagingthetargetsurfacebytheprobeduringscanningtest,wasemployed.Intotal,thirteenjointsurfacesofrockspecimensweretestedbyusingthelaserprofilometer,andthethree-dimensionalcoordinatesoftheroughsurfaceswerecollected.Thefractaldimensionsoftheroughsurfacesarecalculatedbyapplyingthefractalprojectivecoveringmethod[20–22],andthespecimensurfaceprofilesaswellasthecorrespondingbi-logarithmrelationofthecoveringboxnumberversustheboxscaleforfourtypicalmarblespecimensbeforeSHPBtestsareshowninFig.7,whereDisthedimensionofthespecimensurfaces.Fig.7showsthattheerrorofthelinearfitbetweenthelogarithmofcoveringboxscaleandthelogarithmofthenumberofboxesusedforcoveringthejointsissmall.ForspecimenNo.6,theerroris4.3%whichistheumerrorinallbi-logarithmplots,whereasforspecimenNo.13,theerrorisonly0.99%.Fromthefourjointconfigurationsandthecorrespondingbi-logarithmplotsshowninFig.7,itcanbeseenthatthefractaldimensionincreaseswiththeroughnessofthejointsurfaces,thatis,therougherthejointsurface,thehigherthefractaldimension.TheoreticalandexperimentalresultsofthecoefficientsoftransmissionandEq.(25)canbeemployedtocalculatethecoefficientsoftransmissionandreflectionofwavesacrossjoints.BeforeusingEq.(25),theinitialvolumeV0ofazoneandtheno-damagedvolume?ofthezonehavetobedetermined.FromFig.1,V0canbewrittenasV0=πr2(hmax? Wherehmaxandhminarethe umandminimumheightofthejointsurfacescannedbythelaserprofilometer,respectively,risthespecimenradius.Theno-damagedvolume?canbewrittenas?=∑m

+ +

?

j=1[4(hi,j+

Wherehistheheightofatargetpointscannedbythelaserprofilometer,mandnarethenumbersofthetargetpointsscannedalongxandyaxis,respectively,andhmin=min(hi,j+hi+1,j+hi,j+1+hi+1,j+1)FromEqs.(27)And(28),onecanhave?

∑m∑n + + +

?

Table1showsrockparametersmeasuredinthisexperimentalstudy.Thevelocityofstresswavewasmeasuredbyanultrasonoscope.SubstitutingtheparametersinTable1andEq.(29)intoandthecorrespondingtheoreticalresultsarepresentedinTable2.FromtheSHPBtestingresultsofthecurvesofstrainversustimeasshowninFig.6,onecaneasilyobtainthecoefficientsoftransmissionandreflectionofstresswavesacrossjoints,andtheSHPBtestingresultsarealsopresentedinTable2forcomparison.Itcanbeseenthatforthetransmissioncoefficients,theaveragepercentdifferencesbetweenthetheoreticalandexperimentalcoefficientsisonly1.14%,andforthereflectioncoefficients,itis5.42%.ThisindicatesthatthecoefficientsoftransmissionandreflectionpredictedbyEq.(25)arereliable,andaccordinglyEq.(25)iseffective.Fig.8showsthecurvesofthetheoreticalandtheSHPBtestingresultsforthecoefficientsofreflectionandtransmissionasstresswavescrossjoints.Itcanbeseenthatwiththeincreaseofthefractaldimensionofjointsurfaces,thetransmissioncoefficientsofstresswavedecrease,andthecorrespondingreflectioncoefficientsincrease.Thisiseasytounderstandbecausethelargerthefractaldimensionis(ortherougherthejointsurfaceis),thelargerthejointreflectionis.FromFig.8,itcanbeseenthatgenerally,thetheoreticalresultsofthecoefficientsoftransmissionandreflectionagreewellwiththeSHPBtestingresults,andtheerrorbetweenthemisverysmall,whichindicatesthatthefractaldamagemodelofjointspresentedinthispaperiseffective,andtheyticalsolutionforthecoefficientsoftransmissionandreflectionofwavesacrossjointsisreliable.Afractaldamagejointmodelhasbeendeveloped,andtheyticalsolutionEq.(25)forthecoefficientsoftransmissionandreflectionofstresswavesacrossjointshasbeenestablishedbyusingthefractaldamagejointmodel.Itisshownthatasthefractaldimensionofjointsurfacesincreases(orastheroughnessofjointsurfacesincreases),thetransmissioncoefficientsdecrease,whereas,thereflectioncoefficientsincrease.ASHPBtestingsystemhasbeenemployedtomeasurethecoefficientsoftransmissionandreflectionforrockspecimenswithasinglejoint.ItisshownthattheSHPBtestingresultsagreewellwiththetheoreticalresultspresentedinthispaper,whichindicatesthatthefractaldamagemodelofjointsdevelopedinthisPaskaramoorthyR,DattaSK,ShahAH.Effectofinterfacelayersonscatteringofelasticwaves.JApplMech1988;55:871–8.ChevalierY,LouzarM,MauginGA.Surfacewavecharacterizationoftheinterfacebetweentwoanisotropicmedia.JAcoustSocAm1991;90:3218–27.ShindoY,NiwaN.Scatteringofantineshearwavesinafiber-rein dcompositemediumwithinterfaciallayers.ActaMech1996;117:181–90.CaiJG,ZhaoJ.Effectsofmultipleparallelfracturesonapparentattenuationofstresswavesinrockmasses.IntJRockMechMinSci2000;37:661–82.KingM.Elasticwavepropagationandpermeabilityforrockswithmultipleparallelfractures.IntJRockMechMinSci2002;39:1033–43.FanSC,JiaoYY,ZhaoJ.Onmodelingof boundaryforwavepropagationinjointedrockmassesusingdiscreteelementmethod.ComputGeotech2004;31:57–66.KrasnovaT,JanssonP,BostromA.Ultrasonicwavepropagationinananisotropiccladdingwithawavyinterface.WaveMotion2005;41:163–77.GulyayevVI,IvanchenkoGM.Discontinuouswavein ctionwithinterfacesbetweenanisotropicelasticmedia.IntJSolidsStruct2006;43:74–90.GongQM,JiaoYY,ZhaoJ.NumericalmodellingoftheeffectsofjointspacingonrockfragmentationbyTBMcutters.TunnellingUndergroundSpaceTechnol2006;21:46–55.ZhuZ,ntyB,XieH.Numericalinvestigationofblasting-inducedcrackinitiationandpropagationinrocks.IntJRockMechMinSci2007;44:412–24.ZhuZ,XieH,ntyB.Numericalinvestigationofblasting-induceddamageincylindricalrocks.IntJRockMechMinSci2008;45:111–21.Pyrak-NolteLJ.Seismicvisibilityoffractures.Ph.D.Thesis,UnivCalif,Berkeley;ZhaoJ,CaiJG.TransmissionofelasticP-waveacrosssinglefractureswithanonlinearnormaldeformationalbehavior.RockMechRockEng2001;34:3–22.WangWH,LiXB,ZuoYJ.Effectofnon-linearlynormaldeformationaljointonelasticp-wavepropagation.ChinJRockMechEng2006;25:1218–25.[in DougillJW,LauJC,BurtNJ.MechanicsinEnging.ASCE,EMDKahramanS.TheeffectsoffractureroughnessonP-wavevelocity.EngGeolBamfordWE.Suggestedmethodsforthetatived ptionofdiscontinuitiesinrockmasses.IntJRockMechMinSci1978;15:319–69.XieH,JuY.Astudyondamagemechanicstheoryinfractionaldimensionalspace.ActaMech1999;31:300–10[in JuY,SudakL,XieH.Studyonstresswavepropagationinfracturedrockswithfractaljointsurfaces.IntJSolidsStruct2007;44:4256–71.XieH,WangJA.Directfractalmeasurementoffracturesurfaces.IntJSolidsStructMandelbrotBB.HowlongisthecoastlineofBritain?Statisticalself-similarityandfractaldimensionScience1967:155–636.ZhouHW,XieH.Directestimationofthefractaldimensionsofafracturesurfaceofrock.SurfRevLettMandelbrotBB.TheFractalGeometryofNature.New man;Pyrak-NolteLJ,MyerLR,CookNGW.Transmissionofseismicwavesacrosssinglenaturalfractures.JGeophysRes1990;95(6):8617–38.DaviesEDH,HunterSC.ThedynamicscompressiontestingofsolidsbythemethodsofthesplitHopkinsonpressurebar.JMechPhysSolids1963;11:155–79.LifshitzJM,LeberH.DataprocessinginthesplitHopkinsonpressurebartests.IntJImpactEng LindholmUS.SomeexperimentswiththesplitHopkinsonpressurebar.JMechPhysSolids

1,(.大學水利水電學院,中國60065;2.襄樊學院土木工程系,中國襄樊44053;3.大學建筑與環境學院,中國60065):為探討應力波穿越不規則節理時的透反射規律,基于分形損傷理論建立分形損傷節理模型,在此基礎上,根據分形損傷節理模型,推導應力波穿越節理時透反射系數,SHPB節理巖石沖擊動力學試驗解與試驗結果進行對比分析.SHPB試驗的結果和應力波穿越分形節理的解析構面面由于承受了動力負荷使得巖體材料的強度和穩定性都有所減小。這些動力負荷包如今,為了研究節理面對應力波的和能量耗散[–8]的影響建立了大量的關于節理方向[9],[0,]以及是否干性節理等等。關于波在節理中的課題,Cai和Zhao[4]探討了多分形節理面對巖層中應力波衰減的影響。Fanetal.[6]曾提出過使用離散單元法(DEM)對在節理發育的巖體中波的和衰態相互作用的相關問題。Pyrak?Nolte[2]、Zhao和Cai[3]研究過線性變形節理中應力波的特性,并且推導出應力波的透反射系數。Wangetal.[4]借鑒巖石損傷力學思想,基值角度與Zhao和Cai[3]的研究結論完全一致。Kahraman[6]模擬節理面的粗糙性,并探Bamford于978年節理粗糙度系數JRC(jointroughnesscoefficient)可以描述節理粗糙度對應力波的JRC只是一個經驗參數,且僅能用來描述曲線的粗糙度對于空間曲面的粗形下,有必要引入另外一個參數,分形維數,粗糙度8–20],并且應用于此項研究之中。本文將嘗試推導應力波穿越節理時透反射系數的解析解。結合分形理論[2–23]和損傷SHPB試驗設備對應力波穿越單一巖石節理的透反射規律進行試驗研究。當應力波穿越節理面,由于界面面一般比較粗糙所以很難判斷其入射角度。而且,應力波的振幅參數和透反射方向的理論推導也十分在下文中,利用分形理論依據材料損傷演化具有分形性質的基本事實Xie和Ju[8]結合損傷力學原理與分形理論,給出了一種兼顧損傷細觀特征描述和宏觀損傷力學分析需要的分形損傷變量ω(?,ζ),0ω(?,ζ)=1?(1?ω (0:?3;ω0為表觀損傷變量,可表示為 ω0S

式中:S0為承載面的初始截面積,即二維歐氏空間中各區域的表觀面積,S為損傷后的有效截面積,?是無損傷的有效截面積,并且有S0=S+?的關系。ω(?,?),已經[18]。可是等式(2)中的變量ω0,只有考慮到假設損傷發生在表面并且損傷的深度忽略不計。但是當損傷卻是發生在不同的深處時必將一些錯誤。圖顯示了含兩種不同損傷深度的損傷區域。很明顯如果應用等式(2)計算ω0,對于下ω=V-?

式中:V0V?是無損傷體積,并且有V0V+?的關系。把式(3)代入式()中,分形損傷變量可以表示為(3維計算中,de=3)?ω(?,ζ)ù(?,ζ)?=K0(1?ù(?,ζ))

?=

?

K02顯示了兩種巖石樣本,H表示有節理樣本的高度,H-?表示無節理樣本的高度,?δj-δP,2.2.3表示一個粗糙節理和它的等效平直節理;即平直節理的節理剛度等效于此粗糙節2種可以分別解耦地處理外,在斜入射情況下,為滿足給定的邊界條件,則不論入射波u0=A0exp[i(Kx0x+ky0y?ωt)]u1=A1expu2=A2exp[i(Kx2x+ky2y?ωt)]u3=A3exp[i(Kx3x+ky3y?ωt)]u4=A4exp

射橫波質點位移;A0,A,A2,A3,A4(ux)1=u0cosα1?u1cosα1+u2siny{(uy1

=u0sinα1+u1sinα1+u2cos (ux)2=u3cosα2?u4siny{(uy2

=u3sinα2+u1cos 1式中:α1,α2,β1和β23中所示的的角度。式中:(ux)1,(uy)1

x,y方向的位移分量。式(8)和式(9)中的下標,2表示區、2 =(?+2ì)?ux+λ

xy=μ(?x

(式中μ是切變模數。.依據L.J.Pyrak-Nolte[2]線彈性位移不連續模型可知,在節理處的,2區內應力、位移應滿足應力連續、位移間斷的假定,即(σxx)1= (11

=

(

?

=???

(y(uy1

?

=???

(式中:和Ky =A1, =

( =A3, =

( 式中FR1為反射縱波的反射系數,FR2為反射橫波的反射系數,FT1為透射縱波的透射系數,FT2為透射橫波的透射系數。當應力波在彈性介質中時,應力波波速與彈Pλ+2μ= (PSμ= (Sλ=ρ(?2? ( λ= CP(7)到式(9)可以推導出下列

s1sin2α1?FR1s1sin2α1?FR2?s1cos2β1 [FT1s2sin2α2+FT2?s2cos2β2]0

(?p1?sin2α1s1)(1+FR1)?FR2?s1sin2β1

[FT1(?p2?sin2α2s2) FT2?s2sin2β2]= (2

(cosα1?FR1cosα1+FR2sinβ1)?(FT1cosα2?FT2sinβ2)?(?p1?sin2α1s1)(1+FR2)?FR2?s1sin????

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論