




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若x>y,則下列式子錯誤的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.2.據統計,第22屆冬季奧林匹克運動會的電視轉播時間長達88000小時,社交網站和國際奧委會官方網站也創下冬奧會收看率紀錄.用科學記數法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×1063.如圖,將圖1中陰影部分拼成圖2,根據兩個圖形中陰影部分的關系,可以驗證下列哪個計算公式()A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab4.下列各式中計算正確的是A. B. C. D.5.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.6.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.7.魏晉時期的數學家劉徽首創割圓術.為計算圓周率建立了嚴密的理論和完善的算法.作圓內接正多邊形,當正多邊形的邊數不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎上繼續努力,當正多邊形的邊數增加24576時,得到了精確到小數點后七位的圓周率,這一成就在當時是領先其他國家一千多年,如圖,依據“割圓術”,由圓內接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π8.一次數學測試后,隨機抽取九年級某班5名學生的成績如下:91,78,1,85,1.關于這組數據說法錯誤的是()A.極差是20 B.中位數是91 C.眾數是1 D.平均數是919.已知一元二次方程有一個根為2,則另一根為A.2 B.3 C.4 D.810.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm2二、填空題(共7小題,每小題3分,滿分21分)11.計算tan260°﹣2sin30°﹣cos45°的結果為_____.12.釣魚島是中國的固有領土,位于中國東海,面積約4400000平方米,數據4400000用科學記數法表示為______.13.每年農歷五月初五為端午節,中國民間歷來有端午節吃粽子、賽龍舟的習俗.某班同學為了更好地了解某社區居民對鮮肉粽(A)豆沙粽(B)小棗粽(C)蛋黃粽(D)的喜愛情況,對該社區居民進行了隨機抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).分析圖中信息,本次抽樣調查中喜愛小棗粽的人數為________;若該社區有10000人,估計愛吃鮮肉粽的人數約為________.14.在一張直角三角形紙片的兩直角邊上各取一點,分別沿斜邊中點與這兩點的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.15.已知a<0,那么|﹣2a|可化簡為_____.16.若2a﹣b=5,a﹣2b=4,則a﹣b的值為________.17.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內部.將AF延長交邊BC于點G.若,則(用含k的代數式表示).三、解答題(共7小題,滿分69分)18.(10分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發現;當兩個全等的直角三角形如圖(1)擺放時可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點D作DF⊥BC交BC的延長線于點F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c219.(5分)如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于點A(-3,m+8),B(n,-6)兩點.求一次函數與反比例函數的解析式;求△AOB的面積.20.(8分)我國滬深股市交易中,如果買、賣一次股票均需付交易金額的作費用.張先生以每股5元的價格買入“西昌電力”股票1000股,若他期望獲利不低于1000元,問他至少要等到該股票漲到每股多少元時才能賣出?(精確到0.01元)21.(10分)如圖,點在線段上,,,.求證:.22.(10分)在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關系,并證明你的結論.(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)23.(12分)重慶某中學組織七、八、九年級學生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統計,繪制了如圖1和如圖2兩幅不完整的統計圖,根據圖中提供的信息完成以下問題.扇形統計圖中九年級參賽作文篇數對應的圓心角是度,并補全條形統計圖;經過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在校刊上,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在校刊上的概率.24.(14分)平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】根據不等式的性質在不等式兩邊加(或減)同一個數(或式子),不等號的方向不變;不等式兩邊乘(或除以)同一個正數,不等號的方向不變;不等式兩邊乘(或除以)同一個負數,不等號的方向改變即可得出答案:A、不等式兩邊都減3,不等號的方向不變,正確;B、乘以一個負數,不等號的方向改變,錯誤;C、不等式兩邊都加3,不等號的方向不變,正確;D、不等式兩邊都除以一個正數,不等號的方向不變,正確.故選B.2、B【解析】試題分析:根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點:科學記數法.3、B【解析】
根據圖形確定出圖1與圖2中陰影部分的面積,由此即可解答.【詳解】∵圖1中陰影部分的面積為:(a﹣b)2;圖2中陰影部分的面積為:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故選B.【點睛】本題考查了完全平方公式的幾何背景,用不同的方法表示出陰影部分的面積是解題的關鍵.4、B【解析】
根據完全平方公式對A進行判斷;根據冪的乘方與積的乘方對B、C進行判斷;根據合并同類項對D進行判斷.【詳解】A.,故錯誤.B.,正確.C.,故錯誤.D.,故錯誤.故選B.【點睛】考查完全平方公式,合并同類項,冪的乘方與積的乘方,熟練掌握它們的運算法則是解題的關鍵.5、A【解析】
連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了等腰三角形的判定與性質和含30度的直角三角形三邊的關系.6、A【解析】分析:連接OE1,OD1,OD2,如圖,根據正六邊形的性質得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據切線的性質得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數)等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.7、C【解析】
連接OC、OD,根據正六邊形的性質得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關鍵.8、D【解析】
試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數為91,所以B選項正確;因為1出現了兩次,最多,所以眾數是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數②中位數③平均數④極差.9、C【解析】試題分析:利用根與系數的關系來求方程的另一根.設方程的另一根為α,則α+2=6,解得α=1.考點:根與系數的關系.10、A【解析】
根據已知得出圓錐的底面半徑及母線長,那么利用圓錐的側面積=底面周長×母線長÷2求出即可.【詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側面積=12×3π×3=4.5πcm2故選A.【點睛】此題主要考查了圓錐的有關計算,關鍵是利用圓錐的側面積=底面周長×母線長÷2得出.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
分別算三角函數,再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數值,較基礎.12、
【解析】試題分析:將4400000用科學記數法表示為:4.4×1.故答案為4.4×1.考點:科學記數法—表示較大的數.13、120人,3000人【解析】
根據B的人數除以占的百分比得到調查的總人數,再用總人數減去A、B、D的人數得到本次抽樣調查中喜愛小棗粽的人數;利用該社區的總人數×愛吃鮮肉粽的人數所占的百分比得出結果.【詳解】調查的總人數為:60÷10%=600(人),本次抽樣調查中喜愛小棗粽的人數為:600﹣180﹣60﹣240=120(人);若該社區有10000人,估計愛吃鮮肉粽的人數約為:100003000(人).故答案為120人;3000人.【點睛】本題考查了條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.也考查了利用樣本估計總體.14、45或1【解析】
先根據題意畫出圖形,再根據勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【詳解】①如圖:因為AC=22+4點A是斜邊EF的中點,所以EF=2AC=45,②如圖:因為BD=32點D是斜邊EF的中點,所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【點睛】此題考查了圖形的剪拼,解題的關鍵是能夠根據題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.15、﹣3a【解析】
根據二次根式的性質和絕對值的定義解答.【詳解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【點睛】本題主要考查了根據二次根式的意義化簡.二次根式規律總結:當a≥0時,=a;當a≤0時,=﹣a.解題關鍵是要判斷絕對值符號和根號下代數式的正負再去掉符號.16、1.【解析】試題分析:把這兩個方程相加可得1a-1b=9,兩邊同時除以1可得a-b=1.考點:整體思想.17、。【解析】試題分析:如圖,連接EG,∵,∴設,則。∵點E是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即。∴。∴(只取正值)。∴。三、解答題(共7小題,滿分69分)18、見解析.【解析】
首先連結BD,過點B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.【詳解】證明:連結BD,過點B作DE邊上的高BF,則BF=b-a,∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【點睛】此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關鍵.19、(1)y=-,y=-2x-1(2)1【解析】試題分析:(1)將點A坐標代入反比例函數求出m的值,從而得到點A的坐標以及反比例函數解析式,再將點B坐標代入反比例函數求出n的值,從而得到點B的坐標,然后利用待定系數法求一次函數解析式求解;(2)設AB與x軸相交于點C,根據一次函數解析式求出點C的坐標,從而得到點OC的長度,再根據S△AOB=S△AOC+S△BOC列式計算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點A的坐標為(﹣3,2),反比例函數解析式為y=﹣,將點B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點B的坐標為(1,﹣6),將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數解析式為y=﹣2x﹣1;(2)設AB與x軸相交于點C,令﹣2x﹣1=0解得x=﹣2,所以,點C的坐標為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點:反比例函數與一次函數的交點問題.20、至少漲到每股6.1元時才能賣出.【解析】
根據關系式:總售價-兩次交易費≥總成本+1000列出不等式求解即可.【詳解】解:設漲到每股x元時賣出,根據題意得1000x-(5000+1000x)×0.5%≥5000+1000,解這個不等式得x≥,即x≥6.1.答:至少漲到每股6.1元時才能賣出.【點睛】本題考查的是一元一次不等式在生活中的實際運用,解決本題的關鍵是讀懂題意根據“總售價-兩次交易費≥總成本+1000”列出不等關系式.21、證明見解析【解析】
若要證明∠A=∠E,只需證明△ABC≌△EDB,題中已給了兩邊對應相等,只需看它們的夾角是否相等,已知給了DE//BC,可得∠ABC=∠BDE,因此利用SAS問題得解.【詳解】∵DE//BC∴∠ABC=∠BDE在△ABC與△EDB中,∴△ABC≌△EDB(SAS)∴∠A=∠E22、(1)CF與BD位置關系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結論成立,理由見解析;(3)見解析【解析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)過點A作AG⊥AC交BC于點G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=1,BC=3,CD=x,求線段CP的長.考慮點D的位置,分兩種情況去解答.①點D在線段BC上運動,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據相似三角形的性質求解問題.②點D在線段BC延長線上運動時,由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過A作AQ⊥BC交CB延長線于點Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據相似三角形的性質求解問題.【詳解】(1)CF與BD位置關系是垂直;證明如下:∵AB=AC,∠ACB=15°,∴∠ABC=15°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC時,CF⊥BD的結論成立.理由是:過點A作GA⊥AC交BC于點G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可證:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)過點A作AQ⊥BC交CB的延長線于點Q,①點D在線段BC上運動時,∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②點D在線段BC延長線上運動時,∵∠BCA=15°,∴AQ=CQ=1,∴D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產1萬噸精制功能糖醇項目可行性研究報告模板-立項備案
- 埋夾機企業數字化轉型與智慧升級戰略研究報告
- 纖維切斷機企業縣域市場拓展與下沉戰略研究報告
- 微型面包車企業數字化轉型與智慧升級戰略研究報告
- 制革環保企業ESG實踐與創新戰略研究報告
- 不銹鋼餐具企業數字化轉型與智慧升級戰略研究報告
- 開關接插件生產設備企業ESG實踐與創新戰略研究報告
- 磁懸浮飛輪儲能裝置企業ESG實踐與創新戰略研究報告
- 2025年PS鋁合金板項目合作計劃書
- 鍋爐-汽機協調控制系統競爭策略分析報告
- 歷史學科中考復習方法交流
- GB/T 6284-2006化工產品中水分測定的通用方法干燥減量法
- GB/T 4025-2010人機界面標志標識的基本和安全規則指示器和操作器件的編碼規則
- GB/T 22080-2016信息技術安全技術信息安全管理體系要求
- GB/T 19867.5-2008電阻焊焊接工藝規程
- GB/T 18711-2002選煤用磁鐵礦粉試驗方法
- GB/T 17766-1999固體礦產資源/儲量分類
- 小學生防溺水安全教育主題班會PPT
- 5030i儀器原理、維護與操作
- 配電屏柜安裝工藝
- 半導體器件物理 課件
評論
0/150
提交評論