2023屆山西省大同市高考數學二模試卷含解析_第1頁
2023屆山西省大同市高考數學二模試卷含解析_第2頁
2023屆山西省大同市高考數學二模試卷含解析_第3頁
2023屆山西省大同市高考數學二模試卷含解析_第4頁
2023屆山西省大同市高考數學二模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.2.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區進行幫扶活動,每人只能去一個社區,每個社區至少一人.其中甲必須去社區,乙不去社區,則不同的安排方法種數為()A.8 B.7 C.6 D.53.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.復數的共軛復數在復平面內所對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知,,分別是三個內角,,的對邊,,則()A. B. C. D.6.某個命題與自然數有關,且已證得“假設時該命題成立,則時該命題也成立”.現已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立7.下列函數中,值域為的偶函數是()A. B. C. D.8.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或99.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數為()A. B. C. D.10.若平面向量,滿足,則的最大值為()A. B. C. D.11.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區域為不平等區域,表示其面積,為的面積,將稱為基尼系數.對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④12.已知函數,若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為________.14.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數的值為___________.15.已知平面向量與的夾角為,,,則________.16.已知雙曲線的一條漸近線方程為,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.18.(12分)已知函數.(1)當時,求函數的圖象在處的切線方程;(2)討論函數的單調性;(3)當時,若方程有兩個不相等的實數根,求證:.19.(12分)在平面直角坐標系中,已知直線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的極坐標為,直線與曲線的交點為,求的值.20.(12分)已知()過點,且當時,函數取得最大值1.(1)將函數的圖象向右平移個單位得到函數,求函數的表達式;(2)在(1)的條件下,函數,求在上的值域.21.(12分)設數列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數列{an}(2)設cn=bnan,求數列22.(10分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當為中點時,求二面角余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.2、B【解析】根據題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.3、A【解析】

本題根據基本不等式,結合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎知識、邏輯推理能力的考查.【詳解】當時,,則當時,有,解得,充分性成立;當時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現的錯誤有,一是基本不等式掌握不熟,導致判斷失誤;二是不能靈活的應用“賦值法”,通過特取的值,從假設情況下推出合理結果或矛盾結果.4、D【解析】

由復數除法運算求出,再寫出其共軛復數,得共軛復數對應點的坐標.得結論.【詳解】,,對應點為,在第四象限.故選:D.【點睛】本題考查復數的除法運算,考查共軛復數的概念,考查復數的幾何意義.掌握復數的運算法則是解題關鍵.5、C【解析】

原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.6、C【解析】

寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.7、C【解析】試題分析:A中,函數為偶函數,但,不滿足條件;B中,函數為奇函數,不滿足條件;C中,函數為偶函數且,滿足條件;D中,函數為偶函數,但,不滿足條件,故選C.考點:1、函數的奇偶性;2、函數的值域.8、C【解析】

由題意利用兩個向量的數量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數量積的定義和公式,屬于基礎題.9、B【解析】

因為時針經過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經過2小時,時針所轉過的弧度數為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.10、C【解析】

可根據題意把要求的向量重新組合成已知向量的表達,利用向量數量積的性質,化簡為三角函數最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.11、A【解析】

對于①,根據基尼系數公式,可得基尼系數越小,不平等區域的面積越小,國民分配越公平,所以①正確.對于②,根據勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.12、C【解析】

利用導數求得在上遞增,結合與圖象,判斷出的大小關系,由此比較出的大小關系.【詳解】因為,所以在上單調遞增;在同一坐標系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導數研究函數的單調性,考查利用函數的單調性比較大小,考查數形結合的數學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】

根據圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進而可求出的值【詳解】解:設圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結合方程的思想即可求出結果.14、【解析】

求出雙曲線的漸近線方程,右準線方程,得到交點坐標代入拋物線方程求解即可.【詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【點睛】本題考查雙曲線的簡單性質以及拋物線的簡單性質的應用,是基本知識的考查,屬于基礎題.15、【解析】

根據已知求出,利用向量的運算律,求出即可.【詳解】由可得,則,所以.故答案為:【點睛】本題考查向量的模、向量的數量積運算,考查計算求解能力,屬于基礎題.16、【解析】

根據雙曲線的標準方程寫出雙曲線的漸近線方程,結合題意可求得正實數的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點睛】本題考查利用雙曲線的漸近線方程求參數,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)取中點為,連接,,,,根據線段關系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點,,,為,,軸建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點為,連接,,,如下圖所示:因為,,,所以,故為等邊三角形,則.連接,因為,,所以為等邊三角形,則.又,所以平面.因為平面,所以.(2)由(1)知,因為平面平面,平面,所以平面,以為原點,,,為,,軸建立如圖所示的空間直角坐標系,易求,則,,,,則,,.設平面的法向量,則即令,則,,故.設平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【點睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.18、(1);(2)當時,在上是減函數;當時,在上是增函數;(3)證明見解析.【解析】

(1)當時,,求得其導函數,,可求得函數的圖象在處的切線方程;(2)由已知得,得出導函數,并得出導函數取得正負的區間,可得出函數的單調性;(3)當時,,,由(2)得的單調區間,以當方程有兩個不相等的實數根,不妨設,且有,,構造函數,分析其導函數的正負得出函數的單調性,得出其最值,所證的不等式可得證.【詳解】(1)當時,,所以,,所以函數的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當時,,當時,,所以在上是減函數,在上是增函數;(3)當時,,,由(2)得在上單調遞減,在單調遞增,所以,且時,,當時,,,所以當方程有兩個不相等的實數根,不妨設,且有,,構造函數,則,當時,所以,在上單調遞減,且,,由,在上單調遞增,.所以.【點睛】本題考查運用導函數求函數在某點的切線方程,討論函數的單調性,以及證明不等式,關鍵在于構造適當的函數,得出其導函數的正負,得出所構造的函數的單調性,屬于難度題.19、(1)(2)【解析】

(1)由公式可化極坐標方程為直角坐標方程;(2)把點極坐標化為直角坐標,直線的參數方程是過定點的標準形式,因此直接把參數方程代入曲線的方程,利用參數的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標方程為,即(2)點的直角坐標為,易知.設對應參數分別為將與聯立得【點睛】本題考查極坐標方程與直角坐標方程的互化,考查直線參數方程,解題時可利用利用參數方程的幾何意義求直線上兩點間距離問題.20、(1);(2).【解析】

試題分析:(1)由題意可得函數f(x)的解析式為,則.(2)整理函數h(x)的解析式可得:,結合函數的定義域可得函數的值域為.試題解析:(1)由函數取得最大值1,可得,函數過得,,∵,∴,.(2),,,值域為.21、(1)an=(2)Tn【解析】

(1)利用an與Sn的遞推關系可以an的通項公式;P點代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數列{bn(2)因為cn=b則13兩式相減得:23所以Tn【點睛】用遞推關系an=Sn-22、(1)證明見解析;(2).【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論