湖南省懷化市2022年高考數學五模試卷含解析_第1頁
湖南省懷化市2022年高考數學五模試卷含解析_第2頁
湖南省懷化市2022年高考數學五模試卷含解析_第3頁
湖南省懷化市2022年高考數學五模試卷含解析_第4頁
湖南省懷化市2022年高考數學五模試卷含解析_第5頁
免費預覽已結束,剩余14頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在的展開式中,含的項的系數是()A.74 B.121 C. D.2.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.3.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-14.復數,是虛數單位,則下列結論正確的是A. B.的共軛復數為C.的實部與虛部之和為1 D.在復平面內的對應點位于第一象限5.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數字特征是()A.方差 B.中位數 C.眾數 D.平均數6.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.7.已知滿足,則的取值范圍為()A. B. C. D.8.劉徽是我國魏晉時期偉大的數學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內隨機取一個點,此點取自朱方的概率為()A. B. C. D.9.已知復數和復數,則為A. B. C. D.10.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.11.設為虛數單位,為復數,若為實數,則()A. B. C. D.12.已知定義在上的函數滿足,且當時,.設在上的最大值為(),且數列的前項的和為.若對于任意正整數不等式恒成立,則實數的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數在處的切線與直線平行,則為________.14.設(其中為自然對數的底數),,若函數恰有4個不同的零點,則實數的取值范圍為________.15.已知函數,若,則的取值范圍是__16.中,角的對邊分別為,且成等差數列,若,,則的面積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知x∈R,設,,記函數.(1)求函數取最小值時x的取值范圍;(2)設△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.18.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.19.(12分)已知,均為給定的大于1的自然數,設集合,.(Ⅰ)當,時,用列舉法表示集合;(Ⅱ)當時,,且集合滿足下列條件:①對任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設,,,其中,,若,則.20.(12分)已知;.(1)若為真命題,求實數的取值范圍;(2)若為真命題且為假命題,求實數的取值范圍.21.(12分)的內角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.22.(10分)設函數f(x)=x2?4xsinx?4cosx.(1)討論函數f(x)在[?π,π]上的單調性;(2)證明:函數f(x)在R上有且僅有兩個零點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據,利用通項公式得到含的項為:,進而得到其系數,【詳解】因為在,所以含的項為:,所以含的項的系數是的系數是,,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數,還考查了運算求解的能力,屬于基礎題,2.C【解析】

由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題3.D【解析】

利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.4.D【解析】

利用復數的四則運算,求得,在根據復數的模,復數與共軛復數的概念等即可得到結論.【詳解】由題意,則,的共軛復數為,復數的實部與虛部之和為,在復平面內對應點位于第一象限,故選D.【點睛】復數代數形式的加減乘除運算的法則是進行復數運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數化,其次要熟悉復數相關基本概念,如復數的實部為、虛部為、模為、對應點為、共軛為.5.A【解析】

通過方差公式分析可知方差沒有改變,中位數、眾數和平均數都發生了改變.【詳解】由題可知,中位數和眾數、平均數都有變化.本次和上次的月考成績相比,成績和平均數都增加了50,所以沒有改變,根據方差公式可知方差不變.故選:A【點睛】本題主要考查樣本的數字特征,意在考查學生對這些知識的理解掌握水平.6.D【解析】

求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.7.C【解析】

設,則的幾何意義為點到點的斜率,利用數形結合即可得到結論.【詳解】解:設,則的幾何意義為點到點的斜率,作出不等式組對應的平面區域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成立;當過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規劃的非線性目標函數函數問題,解題時作出可行域,利用目標函數的幾何意義求解是解題關鍵.對于直線斜率要注意斜率不存在的直線是否存在.8.C【解析】

首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數形結合的思想和運算求解的能力,屬于基礎題.9.C【解析】

利用復數的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數的三角形式的乘法運算法則是解題的關鍵,復數問題高考必考,常見考點有:點坐標和復數的對應關系,點的象限和復數的對應關系,復數的加減乘除運算,復數的模長的計算.10.B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.11.B【解析】

可設,將化簡,得到,由復數為實數,可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數的模長、除法運算,由復數的類型求解對應參數,屬于基礎題12.C【解析】

由已知先求出,即,進一步可得,再將所求問題轉化為對于任意正整數恒成立,設,只需找到數列的最大值即可.【詳解】當時,則,,所以,,顯然當時,,故,,若對于任意正整數不等式恒成立,即對于任意正整數恒成立,即對于任意正整數恒成立,設,,令,解得,令,解得,考慮到,故有當時,單調遞增,當時,有單調遞減,故數列的最大值為,所以.故選:C.【點睛】本題考查數列中的不等式恒成立問題,涉及到求函數解析、等比數列前n項和、數列單調性的判斷等知識,是一道較為綜合的數列題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據題意得出,由此可得出實數的值.【詳解】,,直線的斜率為,由于函數在處的切線與直線平行,則.故答案為:.【點睛】本題考查利用函數的切線與直線平行求參數,解題時要結合兩直線的位置關系得出兩直線斜率之間的關系,考查計算能力,屬于基礎題.14.【解析】

求函數,研究函數的單調性和極值,作出函數的圖象,設,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,利用一元二次函數根的分布進行求解即可.【詳解】當時,,由得:,解得,由得:,解得,即當時,函數取得極大值,同時也是最大值,(e),當,,當,,作出函數的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數與方程的應用,利用換元法進行轉化一元二次函數根的分布以及.求的導數,研究函數的的單調性和極值是解決本題的關鍵,屬于難題.15.【解析】

根據分段函數的性質,即可求出的取值范圍.【詳解】當時,,,當時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數的性質,已知分段函數解析式求參數范圍,還涉及對數和指數的運算,屬于基礎題.16..【解析】

由A,B,C成等差數列得出B=60°,利用正弦定理得進而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點睛】本題考查了等差數列的性質,三角形的面積公式,考查正弦定理的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)先根據向量的數量積的運算,以及二倍角公式和兩角和的正弦公式化簡得到f(x)=,再根據正弦函數的性質即可求出答案;(2)先求出C的大小,再根據余弦定理和基本不等式,即可求出,根據三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時,,取最小值,所以,所求的取值集合是;(2)由,得,因為,所以,所以,.在中,由余弦定理,得,即,當且僅當時取等號,所以的面積,因此的面積的最大值為.【點睛】本題考查了向量的數量積的運算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.18.(1)見解析;(2).【解析】

(1)利用中位線的性質得出,然后利用線面平行的判定定理可證明出平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因為、分別為、的中點,所以.又因為平面,平面,所以平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,則,,,,,,,.設平面的法向量為,則,即,令,則,,所以.設直線與平面所成角為,所以.因此,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法計算直線與平面所成的角,考查推理能力與計算能力,屬于中等題.19.(Ⅰ);(Ⅱ)(ⅰ)詳見解析.(ⅱ)詳見解析.(Ⅲ)詳見解析.【解析】

(Ⅰ)當,時,,,,,,.即可得出.(Ⅱ)(i)當時,,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設,,,,其中,,,2,,.,可得,通過求和即可證明結論.【詳解】(Ⅰ)解:當,時,,,,,..(Ⅱ)證明:(i)當時,,2,3,,,又,,,,,,必然有,否則,而,與已知對任意,矛盾.因此有.(ii)..,為定值.(iii)由設,,,,其中,,,2,,.,..【點睛】本題主要考查等差數列與等比數列的通項公式求和公式,考查了推理能力與計算能力,屬于難題.20.(1)(2)或【解析】

(1)根據為真命題列出不等式,進而求得實數的取值范圍;(2)應用復合命題真假判定的口訣:真“非”假,假“非”真,一真“或”為真,兩真“且”才真.【詳解】(1),且,解得所以當為真命題時,實數的取值范圍是.(2)由,可得,又∵當時,,.∵當為真命題,且為假命題時,∴與的真假性相同,當假假時,有,解得;當真真時,有,解得;故當為真命題且為假命題時,可得或.【點睛】本題主要考查結合不等式的含有量詞的命題的恒成立問題,存在性問題,考查復合命題的真假判斷,意在考查學生對這些知識的掌握水平和分析推理能力.21.(1)(2)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論