




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如果兩圓只有兩條公切線,那么這兩圓的位置關系是()A.內切 B.外切 C.相交 D.外離2.某班
30名學生的身高情況如下表:身高人數134787則這
30
名學生身高的眾數和中位數分別是A., B.,C., D.,3.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點E,點D為AB的中點,連接DE,則△BDE的周長是()A.3 B.4 C.5 D.64.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發后的時間為t(h),甲、乙前進的路程與時間的函數圖象如圖所示.根據圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發h后與甲相遇 D.甲比乙晚到B地2h5.如圖所示的幾何體的左視圖是()A. B. C. D.6.關于x的方程3x+2a=x﹣5的解是負數,則a的取值范圍是()A.a< B.a> C.a<﹣ D.a>﹣7.如圖,已知點A、B、C、D在⊙O上,圓心O在∠D內部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數和是()A.60° B.45° C.35° D.30°8.點A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數的圖象上,且x1<x2<0<x3,則y1、y2、y3的大小關系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y39.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.10.《九章算術》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數分別表示未知數x,y的系數與相應的常數項.把圖1表示的算籌圖用我們現在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.函數的定義域是__________.12.已知x(x+1)=x+1,則x=________.13.已知n>1,M=,N=,P=,則M、N、P的大小關系為.14.若a+b=3,ab=2,則a2+b2=_____.15.如圖,將△AOB以O為位似中心,擴大得到△COD,其中B(3,0),D(4,0),則△AOB與△COD的相似比為_____.16.函數中,自變量x的取值范圍是.三、解答題(共8題,共72分)17.(8分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結果保留根號)18.(8分)如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.19.(8分)小張同學嘗試運用課堂上學到的方法,自主研究函數y=的圖象與性質.下面是小張同學在研究過程中遇到的幾個問題,現由你來完成:(1)函數y=自變量的取值范圍是;(2)下表列出了y與x的幾組對應值:x…﹣2﹣m﹣﹣12…y…1441…表中m的值是;(3)如圖,在平面直角坐標系xOy中,描出以表中各組對應值為坐標的點,試由描出的點畫出該函數的圖象;(4)結合函數y=的圖象,寫出這個函數的性質:.(只需寫一個)20.(8分)某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.求y關于x的函數關系式;該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?實際進貨時,廠家對A型電腦出廠價下調a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據以上信息,設計出使這100臺電腦銷售總利潤最大的進貨方案.21.(8分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數軸上.22.(10分)先化簡:()÷,再從﹣2,﹣1,0,1這四個數中選擇一個合適的數代入求值.23.(12分)已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從A、B兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時間t(小時)的函數關系如圖所示.(1)圖中的線段l1是(填“甲”或“乙”)的函數圖象,C地在B地的正北方向千米處;(2)誰先到達C地?并求出甲乙兩人到達C地的時間差;(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時到達C地,求他提速后的速度.24.某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數據繪制成如下兩幅不完整的統計圖.請根據以上的信息,回答下列問題:(1)補全扇形統計圖和條形統計圖;(2)所抽查學生參加社會實踐活動天數的眾數是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數不少于7天”的學生大約有多少人?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
兩圓內含時,無公切線;兩圓內切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關系.熟悉兩圓的不同位置關系中的外公切線和內公切線的條數.2、A【解析】
找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據.【詳解】解:這組數據中,出現的次數最多,故眾數為,
共有30人,
第15和16人身高的平均數為中位數,
即中位數為:,
故選:A.【點睛】本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大或從大到小的順序排列,如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.3、C【解析】
根據等腰三角形的性質可得BE=BC=2,再根據三角形中位線定理可求得BD、DE長,根據三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點,∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.【點睛】本題考查了等腰三角形的性質、三角形中位線定理,熟練掌握三角形中位線定理是解題的關鍵.4、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發一小時,用1小時走完全程,可得速度為40km/h.故選B5、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.6、D【解析】
先解方程求出x,再根據解是負數得到關于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因為方程的解為負數,所以<0,解得:a>﹣.【點睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負數時,不等號方向要改變.7、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.8、A【解析】
作出反比例函數的圖象(如圖),即可作出判斷:∵-3<1,∴反比例函數的圖象在二、四象限,y隨x的增大而增大,且當x<1時,y>1;當x>1時,y<1.∴當x1<x2<1<x3時,y3<y1<y2.故選A.9、A【解析】
連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了等腰三角形的判定與性質和含30度的直角三角形三邊的關系.10、A【解析】
根據圖形,結合題目所給的運算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列出方程組.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
根據二次根式的性質,被開方數大于等于0,可知:x-1≥0,解得x的范圍.【詳解】根據題意得:x-1≥0,解得:x≥1.故答案為:.【點睛】此題考查二次根式,解題關鍵在于掌握二次根式有意義的條件.12、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.13、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點睛:本題考查了不等式的性質和利用作差法比較兩個代數式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.14、1【解析】
根據a2+b2=(a+b)2-2ab,代入計算即可.【詳解】∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=1.故答案為:1.【點睛】本題考查對完全平方公式的變形應用能力,要熟記有關完全平方的幾個變形公式.15、3:1.【解析】∵△AOB與△COD關于點O成位似圖形,
∴△AOB∽△COD,
則△AOB與△COD的相似比為OB:OD=3:1,
故答案為3:1(或).16、且.【解析】試題分析:求函數自變量的取值范圍,就是求函數解析式有意義的條件,根據二次根式被開方數必須是非負數和分式分母不為0的條件,要使在實數范圍內有意義,必須且.考點:1.函數自變量的取值范圍;2.二次根式和分式有意義的條件.三、解答題(共8題,共72分)17、【解析】
設燈柱BC的長為h米,過點A作AH⊥CD于點H,過點B作BE⊥AH于點E,構造出矩形BCHE,Rt△AEB,然后解直角三角形求解.【詳解】解:設燈柱的長為米,過點作于點過點做于點∴四邊形為矩形,∵∴又∵∴在中,∴∴又∴在中,解得,(米)∴燈柱的高為米.18、(1)證明見解析;(2)AC=4.【解析】
(1)連接,根據切線的性質得到,根據垂直的定義得到,得到,然后根據圓周角定理證明即可;(2)設的半徑為,根據余弦的定義、勾股定理計算即可.【詳解】(1)連接.∵射線切于點,.,,,,,由圓周角定理得:,;(2)由(1)可知:,,,,,設的半徑為,則,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【點睛】本題考查了切線的性質、圓周角定理以及解直角三角形,掌握切線的性質定理、圓周角定理、余弦的定義是解題的關鍵.19、(1)x≠0;(2)﹣1;(3)見解析;(4)圖象關于y軸對稱.【解析】
(1)由分母不等于零可得答案;(2)求出y=1時x的值即可得;(3)根據表格中的數據,描點、連線即可得;(4)由函數圖象即可得.【詳解】(1)函數y=的定義域是x≠0,故答案為x≠0;(2)當y=1時,=1,解得:x=1或x=﹣1,∴m=﹣1,故答案為﹣1;(3)如圖所示:(4)圖象關于y軸對稱,故答案為圖象關于y軸對稱.【點睛】本題主要考查反比例函數的圖象與性質,解題的關鍵是掌握反比例函數自變量的取值范圍、函數值的求法、列表描點畫函數圖象及反比例函數的性質.20、(1)=﹣100x+50000;(2)該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)見解析.【解析】【分析】(1)根據“總利潤=A型電腦每臺利潤×A電腦數量+B型電腦每臺利潤×B電腦數量”可得函數解析式;(2)根據“B型電腦的進貨量不超過A型電腦的2倍且電腦數量為整數”求得x的范圍,再結合(1)所求函數解析式及一次函數的性質求解可得;(3)據題意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三種情況討論,①當0<a<100時,y隨x的增大而減小,②a=100時,y=50000,③當100<m<200時,a﹣100>0,y隨x的增大而增大,分別進行求解.【詳解】(1)根據題意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y隨x的增大而減小,∵x為正數,∴x=34時,y取得最大值,最大值為46600,答:該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)據題意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60,①當0<a<100時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②a=100時,a﹣100=0,y=50000,即商店購進A型電腦數量滿足33≤x≤60的整數時,均獲得最大利潤;③當100<a<200時,a﹣100>0,y隨x的增大而增大,∴當x=60時,y取得最大值.即商店購進60臺A型電腦和40臺B型電腦的銷售利潤最大.【點睛】本題考查了一次函數的應用及一元一次不等式的應用,弄清題意,找出題中的數量關系列出函數關系式、找出不等關系列出不等式是解題的關鍵.21、(1)x=;(2)x>3;數軸見解析;【解析】
(1)先把分式方程轉化成整式方程,求出方程的解,再進行檢驗即可;(2)先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)方程兩邊都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:檢驗:當時,(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等式①得:x>1,解不等式②得:x>3,∴不等式組的解集為x>3,在數軸上表示為:.【點睛】本題考查了解分式方程和解一元一次不等式組、在數軸上表示不等式組的解集等知識點,能把分式方程轉化成整式方程是解(1)的關鍵,能根據不等式的解集得出不等式組的解集是解(2)的關鍵.22、,1.【解析】
先算括號內的減法,同時把除法變成乘法,再根據分式的乘法進行計算,最后代入求出即可.【詳解】原式=?=?=.∵由題意,x不能取1,﹣1,﹣2,∴x取2.當x=2時,原式===1.【點睛】本題考查了分式的混合運算和求值,能正確根據分式的運算法則進行化簡是解答此題的關鍵.23、(1)乙;3;(2)甲先到達,到達目的地的時間差為小時;(3)速度慢的人提速后的速度為千米/小時.【解析】分析:(1)根據題意結合所給函數圖象進行判斷即可;(2)由所給函數圖象中的信息先求出二人所對應的函數解析式,再由解析式結合圖中信息求出二人到達C地的時間并進行比較、判斷即可得到本問答案;(3)根據圖象中的信息結合(2)中的結論進行解答即可.詳解:(1)由題意結合圖象中的信息可知:圖中線段
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股權捐贈協議書
- 在農村分家分房協議書
- 租賃空調協議書
- 菜籽收購協議書
- 職工派遣協議書
- 桌游店入股合同協議書
- 電梯索賠協議書
- 美國垃圾協議書
- 資料委托協議書
- 股東陽光協議書
- 年產二十萬噸合成氨轉化工段設計
- 《煤礦安全規程》專家解讀(詳細版)
- DB63-T 1806-2020金屬非金屬露天礦山企業安全生產風險分級管控和隱患排查治理實施指南
- 供應過程的核算說課市公開課金獎市賽課一等獎課件
- 2023年海南省中考英語試題
- 智慧海南總體方案(2020-2025年)
- DG-TJ 08-2122-2021 保溫裝飾復合板墻體保溫系統應用技術標準
- SFR-SE-ARC-0031激光跟蹤設置-作業指導書
- 錄音棚、攝影棚、直播室設計方案
- 安全生產隱患排查概述PPT課件
- CRCC認證目錄
評論
0/150
提交評論