




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是一個幾何體的主視圖和俯視圖,則這個幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長方體2.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.3.如圖,在平面直角坐標系中,位于第二象限,點的坐標是,先把向右平移3個單位長度得到,再把繞點順時針旋轉得到,則點的對應點的坐標是()A. B. C. D.4.如圖,在?ABCD中,AB=1,AC=4,對角線AC與BD相交于點O,點E是BC的中點,連接AE交BD于點F.若AC⊥AB,則FD的長為()A.2 B.3 C.4 D.65.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.46.若一個正比例函數的圖象經過A(3,﹣6),B(m,﹣4)兩點,則m的值為()A.2 B.8 C.﹣2 D.﹣87.一元二次方程x2﹣3x+1=0的根的情況()A.有兩個相等的實數根 B.有兩個不相等的實數根C.沒有實數根 D.以上答案都不對8.如圖所示,從☉O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC,已知∠A=26°,則∠ACB的度數為()A.32° B.30° C.26° D.13°9.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=310.關于x的一元一次不等式≤﹣2的解集為x≥4,則m的值為()A.14 B.7 C.﹣2 D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形紙片ABCD中,AB=2cm,點E在BC上,且AE=CE.若將紙片沿AE折疊,點B恰好與AC上的點B1重合,則AC=_____cm.12.如圖,AB是⊙O的直徑,C是⊙O上的點,過點C作⊙O的切線交AB的延長線于點D.若∠A=32°,則∠D=_____度.13.已知x1,x2是方程x2+6x+3=0的兩實數根,則的值為_____.14.如圖所示,在平面直角坐標系中,已知反比例函數y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個頂點B、C恰好同時落在反比例函數的圖象上,則反比例函數的解析式是______________.15.如圖,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.16.若一個多邊形的每一個外角都等于40°,則這個多邊形的內角和是_____.三、解答題(共8題,共72分)17.(8分)如圖,在中,點是的中點,點是線段的延長線上的一動點,連接,過點作的平行線,與線段的延長線交于點,連接、.求證:四邊形是平行四邊形.若,,則在點的運動過程中:①當______時,四邊形是矩形;②當______時,四邊形是菱形.18.(8分)如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點G,過點A作AE∥DB交CB的延長線于點E,過點B作BF∥CA交DA的延長線于點F,AE,BF相交于點H.圖中有若干對三角形是全等的,請你任選一對進行證明;(不添加任何輔助線)證明:四邊形AHBG是菱形;若使四邊形AHBG是正方形,還需在Rt△ABC的邊長之間再添加一個什么條件?請你寫出這個條件.(不必證明)19.(8分)每年的6月5日為世界環保日,為了提倡低碳環保,某公司決定購買10臺節省能源的新設備,現有甲、乙兩種型號的設備可供選購,經調查:購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.求甲、乙兩種型號設備的價格;該公司經預算決定購買節省能源的新設備的資金不超過110萬元,你認為該公司有幾種購買方案;在(2)的條件下,已知甲型設備的產量為240噸/月,乙型設備的產量為180噸/月,若每月要求總產量不低于2040噸,為了節約資金,請你為該公司設計一種最省錢的購買方案.20.(8分)為了解中學生“平均每天體育鍛煉時間”的情況,某地區教育部門隨機調查了若干名中學生,根據調查結果制作統計圖①和圖②,請根據相關信息,解答下列問題:(1)本次接受隨機抽樣調查的中學生人數為_______,圖①中m的值是_____;(2)求本次調查獲取的樣本數據的平均數、眾數和中位數;(3)根據統計數據,估計該地區250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數.21.(8分)在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達式;若將拋物線向下平移4個單位,點P平移后的對應點為如果,求點Q的坐標.22.(10分)如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;(3)設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.23.(12分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂.由定義知,取AB中點N,連結MN,MN與AB的關系是_____.拋物線y=對應的準蝶形必經過B(m,m),則m=_____,對應的碟寬AB是_____.拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.24.問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】【分析】根據三視圖的知識使用排除法即可求得答案.【詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長方形,可排除C,故選A.【點睛】本題考查了由三視圖判斷幾何體的知識,做此類題時可利用排除法解答.2、A【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、D【解析】
根據要求畫出圖形,即可解決問題.【詳解】解:根據題意,作出圖形,如圖:觀察圖象可知:A2(4,2);故選:D.【點睛】本題考查平移變換,旋轉變換等知識,解題的關鍵是正確畫出圖象,屬于中考??碱}型.4、C【解析】
利用平行四邊形的性質得出△ADF∽△EBF,得出=,再根據勾股定理求出BO的長,進而得出答案.【詳解】解:∵在□ABCD中,對角線AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中點,∴==,∴BF=2,FD=4.故選C.【點睛】本題考查了勾股定理與相似三角形的判定與性質,解題的關鍵是熟練的掌握勾股定理與相似三角形的判定與性質.5、C【解析】
∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質.6、A【解析】試題分析:設正比例函數解析式為:y=kx,將點A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函數解析式為:y=﹣2x,將B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故選A.考點:一次函數圖象上點的坐標特征.7、B【解析】
首先確定a=1,b=-3,c=1,然后求出△=b2-4ac的值,進而作出判斷.【詳解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0兩個不相等的實數根;故選B.【點睛】此題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數;(3)△<0?方程沒有實數根.8、A【解析】
連接OB,根據切線的性質和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質可得∠C=∠OBC,根據三角形外角的性質即可求得∠ACB的度數.【詳解】連接OB,∵AB與☉O相切于點B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點睛】本題考查了切線的性質,利用切線的性質,結合三角形外角的性質求出角的度數是解決本題的關鍵.9、C【解析】
試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.10、D【解析】
解不等式得到x≥m+3,再列出關于m的不等式求解.【詳解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵關于x的一元一次不等式≤﹣1的解集為x≥4,∴m+3=4,解得m=1.故選D.考點:不等式的解集二、填空題(本大題共6個小題,每小題3分,共18分)11、4【解析】
∵AB=2cm,AB=AB1,∴AB1=2cm,∵四邊形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE∴AB1=B1C∴AC=4cm.12、1【解析】分析:連接OC,根據圓周角定理得到∠COD=2∠A,根據切線的性質計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=1°,故答案為:1.點睛:本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.13、1.【解析】試題分析:∵,是方程的兩實數根,∴由韋達定理,知,,∴===1,即的值是1.故答案為1.考點:根與系數的關系.14、【解析】解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設菱形平移后B的坐標是(x,4),C的坐標是(1+x,2).∵B、C落在反比例函數的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標是(1,4),代入反比例函數的解析式得:k=1×4=4,即B、C落在反比例函數的圖象上,菱形的平移距離是1,反比例函數的解析式是y=.故答案為y=.點睛:本題考查了菱形的性質,用待定系數法求反比例函數的解析式,平移的性質的應用,主要考查學生的計算能力.15、1.【解析】
由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行線分線段成比例定理,即可求得答案.【詳解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案為:1.【點睛】此題考查了平行線分線段成比例定理以及等腰三角形的判定與性質.注意掌握線段的對應關系是解此題的關鍵.16、【解析】
根據任何多邊形的外角和都是360度,先利用360°÷40°求出多邊形的邊數,再根據多邊形的內角和公式(n-2)?180°計算即可求解.【詳解】解:多邊形的邊數是:360°÷40°=9,
則內角和是:(9-2)?180°=1260°.
故答案為1260°.【點睛】本題考查正多邊形的外角與邊數的關系,求出多邊形的邊數是解題的關鍵.三、解答題(共8題,共72分)17、(1)、證明過程見解析;(2)、①、2;②、1.【解析】
(1)、首先證明△BEF和△DCF全等,從而得出DC=BE,結合DC和AB平行得出平行四邊形;(2)、①、根據矩形得出∠CEB=90°,結合∠ABC=120°得出∠CBE=60°,根據直角三角形的性質得出答案;②、根據菱形的性質以及∠ABC=120°得出△CBE是等邊三角形,從而得出答案.【詳解】(1)、證明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵點F是BC的中點,∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,∴△EBF≌△DCF(AAS),∴DC=BE,∴四邊形BECD是平行四邊形;(2)、①BE=2;∵當四邊形BECD是矩形時,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=BC=2,②BE=1,∵四邊形BECD是菱形時,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等邊三角形,∴BE=BC=1.【點睛】本題主要考查的是平行四邊形的性質以及矩形、菱形的判定定理,屬于中等難度的題型.理解平行四邊形的判定定理以及矩形和菱形的性質是解決這個問題的關鍵.18、(1)詳見解析;(2)詳見解析;(3)需要添加的條件是AB=BC.【解析】試題分析:(1)可根據已知條件,或者圖形的對稱性合理選擇全等三角形,如△ABC≌△BAD,利用SAS可證明.(2)由已知可得四邊形AHBG是平行四邊形,由(1)可知∠ABD=∠BAC,得到△GAB為等腰三角形,?AHBG的兩鄰邊相等,從而得到平行四邊形AHBG是菱形.試題解析:(1)解:△ABC≌△BAD.證明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)證明:∵AH∥GB,BH∥GA,∴四邊形AHBG是平行四邊形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四邊形AHBG是菱形.(3)需要添加的條件是AB=BC.點睛:本題考查全等三角形,四邊形等幾何知識,考查幾何論證和思維能力,第(3)小題是開放題,答案不唯一.19、(1)甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元.(2)有6種購買方案.(3)最省錢的購買方案為,選購甲型設備4臺,乙型設備6臺.【解析】
(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,根據購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元可列出方程組,解之即可;(2)設購買甲型設備臺,乙型設備臺,根據購買節省能源的新設備的資金不超過110萬元列不等式,解之確定m的值,即可確定方案;(3)因為公司要求每月的產量不低于2040噸,據此可得關于m的不等式,解之即可由m的值確定方案,然后進行比較,做出選擇即可.【詳解】(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,由題意得:,解得:,則甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元;(2)設購買甲型設備臺,乙型設備臺,則,∴,∵取非負整數,∴,∴有6種購買方案;(3)由題意:,∴,∴為4或5,當時,購買資金為:(萬元),當時,購買資金為:(萬元),則最省錢的購買方案是選購甲型設備4臺,乙型設備6臺.【點睛】本題考查了二元一次方程組的應用,一元一次不等式的應用,弄清題意,找準等量關系、不等關系列出方程組與不等式是解題的關鍵.20、(1)250、12;(2)平均數:1.38h;眾數:1.5h;中位數:1.5h;(3)160000人;【解析】
(1)根據題意,本次接受調查的學生總人數為各個金額人數之和,用總概率減去其他金額的概率即可求得m值.(2)平均數為一組數據中所有數據之和再除以這組數據的個數;眾數是在一組數據中出現次數最多的數;中位數是將一組數據按大小順序排列,處于最中間位置的一個數據,或是最中間兩個數據的平均數,據此求解即可.(3)根據樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數”的概率乘以全??側藬登蠼饧纯桑驹斀狻浚?)本次接受隨機抽樣調查的中學生人數為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數為=1.38(h),眾數為1.5h,中位數為=1.5h;(3)估計每天在校體育鍛煉時間大于等于1.5h的人數約為250000×=160000人.【點睛】本題主要考查數據的收集、處理以及統計圖表.21、為;點Q的坐標為或.【解析】
依據拋物線的對稱軸方程可求得b的值,然后將點B的坐標代入線可求得c的值,即可求得拋物線的表達式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關于x對稱,可求得點Q的縱坐標,將點Q的縱坐標代入平移后的解析式可求得對應的x的值,則可得到點Q的坐標.【詳解】拋物線頂點A的橫坐標是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個單位.平移后拋物線的解析式為,.,點O在PQ的垂直平分線上.又軸,點Q與點P關于x軸對稱.點Q的縱坐標為.將代入得:,解得:或.點Q的坐標為或.【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了待定系數法求二次函數的解析式、二次函數的平移規律、線段垂直平分線的性質,發現點Q與點P關于x軸對稱,從而得到點Q的縱坐標是解題的關鍵.22、(1)y=x2+2x﹣3;(2)點P的坐標為(2,21)或(﹣2,5);(3).【解析】
(1)先根據點A坐標及對稱軸得出點B坐標,再利用待定系數法求解可得;(2)利用(1)得到的解析式,可設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.然后依據S△POC=2S△BOC列出關于a的方程,從而可求得a的值,于是可求得點P的坐標;(3)先求得直線AC的解析式,設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3),然后可得到QD與x的函數的關系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點A(﹣3,0),對稱軸為直線x=﹣1,∴拋物線與x軸的交點B的坐標為(1,0),設拋物線解析式為y=a(x+3)(x﹣1),將點C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,則拋物線解析式為y=(x+3)(x﹣1)=x2+2x﹣3;(2)設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.∵S△POC=2S△BOC,∴?OC?|a|=2×OC?OB,即×3×|a|=2××3×1,解得a=±2.當a=2時,點P的坐標為(2,21);當a=﹣2時,點P的坐標為(﹣2,5).∴點P的坐標為(2,21)或(﹣2,5).(3)如圖所示:設AC的解析式為y=kx﹣3,將點A的坐標代入得:﹣3k﹣3=0,解得k=﹣1,∴直線AC的解析式為y=﹣x﹣3.設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴當x=﹣時,QD有最大值,QD的最大值為.【點睛】本題主要考查了二次函數綜合題,解題的關鍵是熟練掌握二次函數的性質和應用.23、(1)MN與AB的關系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】
(1)直接利用等腰直角三角形的性質分析得出答案;(2)利用已知點為B(m,m),代入拋物線解析式進而得出m的值,即可得出AB的值;(2)①根據題意得出拋物線必過(2,0),進而代入求出答案;②根據y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進而得出答案.【詳解】(1)MN與AB的關系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點,∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對應的準蝶形必經過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 菏澤市重點中學2025年高三第二次調研測試物理試題理試題含解析
- 河南焦作市沁陽市2025屆初三年級第一次質量調研生物試題試卷含解析
- 浙江機電職業技術學院《特效化妝工藝》2023-2024學年第一學期期末試卷
- 紅色簡約商務風季度績效考核報告
- 電機在醫療放射設備中的應用考核試卷
- 森林公園生態旅游市場品牌建設與競爭力提升考核試卷
- 煤氣化中的智能化制造技術發展前景考核試卷
- 工程質量事故分析總復習考核試卷
- 液壓技術在物料搬運設備中的重要性考核試卷
- 2025屆上海市長寧區高三二??荚嚁祵W試卷
- 施工風險技術風險
- (高清版)JGT 225-2020 預應力混凝土用金屬波紋管
- 酸棗仁湯的臨床應用研究
- 河北省廊坊市安次區2023-2024學年八年級下學期4月期中物理試題
- 前庭神經炎病人的護理
- 招標代理服務 投標方案(技術方案)
- 寺院宣傳法治知識講座
- 《多源圖像融合技術及其遙感應用-圖像融合技術》課件
- 直播帶崗方案
- 網絡安全前沿技術與未來趨勢研究
- 遼寧省沈陽市鐵西區2024屆英語三年級第二學期期中調研試題含答案
評論
0/150
提交評論