




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.2.函數的圖象與函數的圖象的交點橫坐標的和為()A. B. C. D.3.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.4.從集合中隨機選取一個數記為,從集合中隨機選取一個數記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.5.總體由編號01,,02,…,19,20的20個個體組成.利用下面的隨機數表選取5個個體,選取方法是隨機數表第1行的第5列和第6列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.016.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發奇想,設計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P27.已知全集為,集合,則()A. B. C. D.8.對某兩名高三學生在連續9次數學測試中的成績(單位:分)進行統計得到折線圖,下面是關于這兩位同學的數學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績為130分;②根據甲同學成績折線圖提供的數據進行統計,估計該同學平均成績在區間110,120內;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續九次測驗成績每一次均有明顯進步.其中正確的個數為()A.4 B.3 C.2 D.19.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件10.在區間上隨機取一個實數,使直線與圓相交的概率為()A. B. C. D.11.《易經》包含著很多哲理,在信息學、天文學中都有廣泛的應用,《易經》的博大精深,對今天的幾何學和其它學科仍有深刻的影響.下圖就是易經中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.12.設,滿足,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程為______.14.已知f(x)為偶函數,當x≤0時,f(x)=e-x-1-x,則曲線y=f(x)15.某高校組織學生辯論賽,六位評委為選手成績打出分數的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則所剩數據的平均數與中位數的差為______.16.已知函數圖象上一點處的切線方程為,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉而成,記二面角的大小為.(1)當平面平面時,求的值;(2)當時,求二面角的余弦值.18.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.19.(12分)如圖,在矩形中,,,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.20.(12分)在直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.21.(12分)設實數滿足.(1)若,求的取值范圍;(2)若,,求證:.22.(10分)在中,角的對邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據函數單調性逐項判斷即可【詳解】對A,由正弦函數的單調性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數,且a>b,所以ca>cb,正確對C,因為y=xc為增函數,故,錯誤;對D,因為在為減函數,故,錯誤故選B.【點睛】本題考查了不等式的基本性質以及指數函數的單調性,屬基礎題.2.B【解析】
根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數的圖象與函數的圖象交點的橫坐標的和,故選B.【點睛】本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養.3.A【解析】
設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.【點睛】本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關系.4.A【解析】
設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.5.D【解析】從第一行的第5列和第6列起由左向右讀數劃去大于20的數分別為:08,02,14,07,01,所以第5個個體是01,選D.考點:此題主要考查抽樣方法的概念、抽樣方法中隨機數表法,考查學習能力和運用能力.6.C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數,屬于基礎題.7.D【解析】
對于集合,求得函數的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數的定義域,考查解一元二次不等式.8.C【解析】
利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績為低于130分,①錯誤;②根據甲同學成績折線圖提供的數據進行統計,估計該同學平均成績在區間[110,120]內,②正確;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.9.B【解析】
試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題10.D【解析】
利用直線與圓相交求出實數的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數,考查計算能力,屬于基礎題.11.B【解析】
由圖利用三角形的面積公式可得正八邊形中每個三角形的面積,再計算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個等腰三角形,頂角為,設三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎題.12.C【解析】
首先繪制出可行域,再繪制出目標函數,根據可行域范圍求出目標函數中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數在點處取得最小值,故目標函數的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規劃中目標函數的取值范圍的問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
對函數求導,得出在處的一階導數值,即得出所求切線的斜率,再運用直線的點斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點睛】本題考查運用函數的導函數求函數在切點處的切線方程,關鍵在于求出在切點處的導函數值就是切線的斜率,屬于基礎題.14.y=2x【解析】試題分析:當x>0時,-x<0,則f(-x)=ex-1+x.又因為f(x)為偶函數,所以f(x)=f(-x)=ex-1+x,所以f'【考點】函數的奇偶性、解析式及導數的幾何意義【知識拓展】本題題型可歸納為“已知當x>0時,函數y=f(x),則當x<0時,求函數的解析式”.有如下結論:若函數f(x)為偶函數,則當x<0時,函數的解析式為y=-f(x);若f(x)為奇函數,則函數的解析式為y=-f(-x).15.【解析】
先根據莖葉圖求出平均數和中位數,然后可得結果.【詳解】剩下的四個數為83,85,87,95,且這四個數的平均數,這四個數的中位數為,則所剩數據的平均數與中位數的差為.【點睛】本題主要考查莖葉圖的識別和統計量的計算,側重考查數據分析和數學運算的核心素養.16.1【解析】
求出導函數,由切線方程得切線斜率和切點坐標,從而可求得.【詳解】由題意,∵函數圖象在點處的切線方程為,∴,解得,∴.故答案為:1.【點睛】本題考查導數的幾何意義,求出導函數是解題基礎,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)平面平面,建立坐標系,根據法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.18.(1)詳見解析;(2).【解析】
(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,求出相應點的坐標,求出平面的一個法向量和平面的法向量,利用空間向量數量積運算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中,,所以為直角三角形,且.因為,,所以.因為,,,所以平面.又平面,所以平面平面.(2)由已知,以為坐標原點,分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,,,.設平面的一個法向量為,則即,取,得.設平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【點睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數量積求二面角的余弦值問題.19.(1)見解析;(2)【解析】
(1)取的中點,連接,,由,進而,由,得.進而平面,進而結論可得證(2)(方法一)過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點,上的點,使,連接,得,,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點,連接,,由已知得,所以,又點是的中點,所以.因為,點是線段的中點,所以.又因為,所以,從而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,則點,,,,所以,,.設平面的法向量為,由,得,令,得.同理,設平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點,上的點,使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計算得,,,所以.【點睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計算能力,是中檔題20.(1):,:;(2)【解析】
(1)根據點斜式寫出直線的直角坐標方程,并
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 燈具在醫療場所的特殊要求設計考核試卷
- 汽車維修中的車輛改裝技術考核試卷
- 針對性復習項目管理考試必學的知識點試題及答案
- 畜牧業旅游資源開發與保護考核試卷
- 確立目標2025年特許金融分析師考試試題及答案
- 新編特種設備定期檢驗申報制度
- 注冊會計師考試2025年投資法律環境試題及答案
- 2023年中國郵政集團有限公司云南省分公司第一期見習人員接收714人筆試參考題庫附帶答案詳解
- 電氣機械的企業社會責任與可持續發展考核試卷
- 筆記本散熱系統維修與優化考核試卷
- 漢譯巴利三藏相應部3-蘊篇
- 湖北地區醫院詳細名單一覽表
- 建筑外窗抗風壓性能計算書
- 年產萬噸酒精發酵車間設計
- 生物化學與分子生物學人衛版教材全集
- 照片里的故事
- 土木工程畢業設計框架結構教學樓計算書
- 整理【越南】環境保護法
- 河北工業大學碩士生指導教師(含新申請者)簡況表.
- TAIYE370-DTH-IV液壓鉆機操作維護說明書
- 吉林大學第一臨床醫學院進修人員申請表
評論
0/150
提交評論