




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinA(yù)sinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A=Sin2A=2SinA?CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A=3sinA(yù)-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化積sina+sinb=2sincossina-sinb=2cossincosa+cosb=2coscoscosa-cosb=-2sinsintana+tanb=積化和差sinasinb=-[cos(a+b)-cos(a-b)]cosacosb=[cos(a+b)+cos(a-b)]sinacosb=[sin(a+b)+sin(a-b)]cosasinb=[sin(a+b)-sin(a-b)]誘導(dǎo)公式sin(-a)=-sinacos(-a)=cosasin(-a)=cosacos(-a)=sinasin(+a)=cosacos(+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=萬能公式sina=cosa=tana=其他a?sina+b?cosa=×sin(a+c)[其中tanc=]a?sin(a)-b?cos(a)=×cos(a-c)[其中tan(c)=]1+sin(a)=(sin+cos)21-sin(a)=(sin-cos)2非重點三角函數(shù)csc(a)=sec(a)=雙曲函數(shù)sinh(a)=cosh(a)=tgh(a)=公式一:設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α與-α的三角函數(shù)值之間的關(guān)系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:運用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:運用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:±α及±α與α的三角函數(shù)值之間的關(guān)系:sin(+α)=cosαcos(+α)=-sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=cosαcos(-α)=sinαtan(-α)=cotαcot(-α)=tanαsin(+α)=-cosαcos(+α)=sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=-cosαcos(-α)=-sinαtan(-α)=cotαcot(-α)=tanα(以上k∈Z)物理公式A?sin(ωt+θ)+B?sin(ωt+φ)=×sin公式表達式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式b2-4a=0注:方程有相等的兩實根b2-4ac>0注:方程有一個實根b2-4ac<0注:方程有共軛復(fù)數(shù)根三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinA(yù)sinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA(yù)-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些數(shù)列前n項和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表達三角形的外接圓半徑余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標準方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h正棱錐側(cè)面積S=1/2c*h'正棱臺側(cè)面積S=1/2(c+c')h'圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h-----------------------三角函數(shù)
積化和差和差化積公式記不住就自己推,用兩角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB這兩式相加或相減,可以得到2組積化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相減:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA這兩式相加或相減,可以得到2組積化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相減:sinBcosA=[sin(A+B)-sin(A-B)]/2這樣一共4組積化和差,然后倒過來就是和差化積了不知道這樣你可以記住伐,實在記不住考試的時候也可以臨時推導(dǎo)一下正加正正在前正減正余在前余加余都是余余減余沒有余還負正余正加余正正減余余余加正正余減還負.3.三角形中的一些結(jié)論:
(1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1
(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC
(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1.........
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 糕點店財務(wù)管理與風(fēng)險防范考核試卷
- 數(shù)據(jù)庫應(yīng)用操作技巧分享試題及答案
- 計算機四級考試小貼士試題及答案分享
- 行政組織中的創(chuàng)新思維與解決問題策略試題及答案
- 公司會所食堂管理制度
- 公路工程團隊建設(shè)試題及答案
- 嵌入式系統(tǒng)中的數(shù)據(jù)通信技術(shù)試題及答案
- 展會公共人員管理制度
- 勞務(wù)公司分包管理制度
- 醫(yī)院新進職工管理制度
- MOOC 數(shù)值天氣預(yù)報-南京信息工程大學(xué) 中國大學(xué)慕課答案
- 2022屆高考英語復(fù)習(xí):最后一節(jié)英語課(13張PPT)
- 加強評標專家管理實施方案
- 初中畢業(yè)典禮畢業(yè)季博士帽藍色創(chuàng)意PPT模板
- 股票實戰(zhàn)技巧(一)薛斯通道_CCI_DMI經(jīng)典指標組合
- 2018湖北省新版消防控制室值班記錄本模板
- 小學(xué)生德育教育ppt課件
- 配電箱系統(tǒng)圖
- 精選靜電感應(yīng)現(xiàn)象的應(yīng)用練習(xí)題(有答案)
- 初中音樂--人聲的分類--(1)pptppt課件
- 小作坊生產(chǎn)工藝流程圖(共2頁)
評論
0/150
提交評論