




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區的她2023年吉林職業技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.過點(-1,3)且平行于直線x-2y+3=0的直線方程為()
A.x-2y+7=0
B.2x+y-1=0
C.x-2y-5=0
D.2x+y-5=0答案:A2.大熊貓活到十歲的概率是0.8,活到十五歲的概率是0.6,若現有一只大熊貓已經十歲了,則他活到十五歲的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B3.
如圖,平面內向量,的夾角為90°,,的夾角為30°,且||=2,||=1,||=2,若=λ+2
,則λ等()
A.
B.1
C.
D.2
答案:D4.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或65.一個箱中原來裝有大小相同的
5
個球,其中
3
個紅球,2
個白球.規定:進行一次操
作是指“從箱中隨機取出一個球,如果取出的是紅球,則把它放回箱中;如果取出的是白
球,則該球不放回,并另補一個紅球放到箱中.”
(1)求進行第二次操作后,箱中紅球個數為
4
的概率;
(2)求進行第二次操作后,箱中紅球個數的分布列和數學期望.答案:(1)設A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進行第二次操作后,箱中紅球個數為
4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設進行第二次操作后,箱中紅球個數為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進行第二次操作后,箱中紅球個數X的分布列為:進行第二次操作后,箱中紅球個數X的數學期望EX=3×925+4×1425+5×225=9325.6.極坐標方程ρcos2θ=0表示的曲線為()
A.極點
B.極軸
C.一條直線
D.兩條相交直線答案:D7.已知M和N分別是四面體OABC的邊OA,BC的中點,且,若=a,=b,=c,則用a,b,c表示為()
A.
B.
C.
D.
答案:B8.在曲線(t為參數)上的點是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A9.關于x的方程ax+b=0,當a,b滿足條件______
時,方程的解集是有限集;滿足條件______
時,方程的解集是無限集;滿足條件______
時,方程的解集是空集.答案:關于x的方程ax+b=0,有一個解時,為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時,方程有無數組解,方程的解集是無限集;滿足條件
a=0,b≠0
時,方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;
a=0,b≠0.10.已知A,B,C三點不共線,O為平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點不共線,點O是平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21511.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,則全班學生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:212.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),則實數λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b?(a+λb)=0,即(1,1)?(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-313.如果過點A(x,4)和(-2,x)的直線的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直線的斜率等于1,故1=4-xx-(-2),解得x=1故選B14.若直線過點(1,2),(),則此直線的傾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C15.求證:定義在實數集上的單調減函數y=f(x)的圖象與x軸至多只有一個公共點.答案:證明:假設函數y=f(x)的圖象與x軸有兩個交點…(2分)設交點的橫坐標分別為x1,x2,且x1<x2.因為函數y=f(x)在實數集上單調遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設不成立.
…(12分)故原命題成立.…(14分)16.已知某一隨機變量ξ的分布列如下,且Eξ=6.3,則a的值為()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C17.已知a,b是非零向量,且a,b夾角為π3,則向量p=a丨a丨+b丨b丨的模為______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|
|b|cosπ3=12|a|
|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故為3.18.已知圓(x+2)2+y2=36的圓心為M,設A為圓上任一點,N(2,0),線段AN的垂直平分線交MA于點P,則動點P的軌跡是()
A.圓
B.橢圓
C.雙曲線
D.拋物線答案:B19.已知橢圓C的中心在原點,焦點F1,F2在軸上,離心率e=22,且經過點M(0,2),求橢圓c的方程答案:若焦點在x軸很明顯,過點M(0,2)點M即橢圓的上端點,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.20.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設正方體的棱長為a,不妨設a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.21.某批n件產品的次品率為1%,現在從中任意地依次抽出2件進行檢驗,問:
(1)當n=100,1000,10000時,分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)
(2)根據(1),談談你對超幾何分布與二項分布關系的認識.答案:(1)當n=100時,如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產品中次品數為1,正品數是99,從100件產品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當n=1000時,如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產品中次品數為10,正品數是990,從1000件產品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產品中次品數為1000,正品數是9000,從10000件產品里抽2件,總的可能是C100002,次品的可能是C1001C99001.所以概率為C1100?C19900C210000≈0.0198.(2)對超幾何分布與二項分布關系的認識:共同點:每次試驗只有兩種可能的結果:成功或失敗.不同點:1、超幾何分布是不放回抽取,二項分布是放回抽取;
2、超幾何分布需要知道總體的容量,二項分布不需要知道總體容量,但需要知道“成功率”;聯系:當產品的總數很大時,超幾何分布近似于二項分布.22.已知直線的參數方程為x=1+ty=3+2t.(t為參數),圓的極坐標方程為ρ=2cosθ+4sinθ.
(I)求直線的普通方程和圓的直角坐標方程;
(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)23.數學歸納法證明“2n+1≥n2+n+2(n∈N*)”時,第一步驗證的表達式為______.答案:根據數學歸納法的步驟,首先要驗證證明當n取第一個值時命題成立;結合本題,要驗證n=1時,2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故為:21+1≥12+1+2(22≥4或4≥4也算對).24.已知=(1,2),=(-3,2),k+與-3垂直時,k的值為(
)
A.17
B.18
C.19
D.20答案:C25.賦值語句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說法都不對答案:B26.已知隨機變量ξ~N(3,22),若ξ=2η+3,則Dη=()
A.0
B.1
C.2
D.4答案:B27.過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(0,2)在圓x2+y2=4上,∴過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是0x+2y=4,即y=2.故為:y=2.28.設雙曲線C:x2a2-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.
(I)求雙曲線C的離心率e的取值范圍:
(II)設直線l與y軸的交點為P,且PA=512PB.求a的值.答案:(I)由C與l相交于兩個不同的點,故知方程組x2a2-y2=1x+y=1.有兩個不同的實數解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.雙曲線的離心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即離心率e的取值范圍為(62,2)∪(2,+∞).(II)設A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1?x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.29.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數m的取值范圍是()
A.
B.(-2,0)
C.(-2,1)
D.(0,1)答案:C30.已知函數f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數”.在函數①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數”.(填上正確的函數序號)答案:f1(x),f2(x)是“保三角形函數”,f3(x)不是“保三角形函數”.任給三角形,設它的三邊長分別為a,b,c,則a+b>c,不妨假設a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數”.對于f3(x),3,3,5可作為一個三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數”.故為:①②.31.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根據柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當且僅當3a+1=3b+1=3c+1,即a=b=c=13時,(3a+1+3b+1+3c+1)2的最大值為18因此,3a+1+3b+1+3c+1的最大值為18=3232.若直線的參數方程為,則直線的斜率為(
)A.B.C.D.答案:D33.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個向量的數量積的定義、數量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.34.已知a≠0,證明關于x的方程ax=b有且只有一個根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個根x=ba,另一方面,假設方程ax=b還有一個根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設矛盾,故方程ax=b只有一個根.綜上所述,方程ax=b有且只有一個根.35.已知點P為y軸上的動點,點M為x軸上的動點,點F(1,0)為定點,且滿足PN+12NM=0,PM?PF=0.
(Ⅰ)求動點N的軌跡E的方程;
(Ⅱ)過點F且斜率為k的直線l與曲線E交于兩點A,B,試判斷在x軸上是否存在點C,使得|CA|2+|CB|2=|AB|2成立,請說明理由.答案:(Ⅰ)設N(x,y),則由PN+12NM=0,得P為MN的中點.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM?PF=-x+y24=0,即y2=4x.∴動點N的軌跡E的方程y2=4x.(Ⅱ)設直線l的方程為y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.設A(x1,y1),B(x2,y2),則
y1+y2=4k,y1y2=-4.假設存在點C(m,0)滿足條件,則CA=(x1-m,y1),CB=(x2-m,y2),∴CA?CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴關于m的方程m2-m(4k2+2)-3=0有解.∴假設成立,即在x軸上存在點C,使得|CA|2+|CB|2=|AB|2成立.36.運行如圖的程序,將自然數列0,1,2,…依次輸入作為a的值,則輸出結果x為______.
答案:當n=2時,x=5×6+0=30,當n=1時,x=30×6+1=181,當n=0時,x=181×6+2=1088,故為:108837.(選做題)某制藥企業為了對某種藥用液體進行生物測定,需要優選培養溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分數法進行優選時,能保證找到最佳培養溫度需要最少實驗次數為(
)。答案:738.用數學歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當n=1時,左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設當n=k時,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當n=k+1時,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當n=k+1時等式也成立.(10分)根據(1)和(2),可知等式對任何n∈N*都成立.(12分)39.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C40.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.41.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等腰三角形答案:D42.下列語句是命題的是______.
①求證3是無理數;
②x2+4x+4≥0;
③你是高一的學生嗎?
④一個正數不是素數就是合數;
⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因為x2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因為x2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.43.書架上有5本數學書,4本物理書,5本化學書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數學書,4本物理書,5本化學書,∴從中任取一本,不同的取法有5+4+5=14種故選A.44.如圖程序輸出的結果是()
a=3,
b=4,
a=b,
b=a,
PRINTa,b
END
A.3,4
B.4,4
C.3,3
D.4,3答案:B45.如果關于x的不等式組有解,那么實數a的取值范圍(
)
A.(-∞,-3)∪(1,+∞)
B.(-∞,-1)∪(3,+∞)
C.(-1,3)
D.(-3,1)答案:C46.如圖,正方體ABCD-A1B1C1D1中,點E是棱BC的中點,點F
是棱CD上的動點.
(Ⅰ)試確定點F的位置,使得D1E⊥平面AB1F;
(Ⅱ)當D1E⊥平面AB1F時,求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大小.答案:(I)由題意可得:以A為原點,分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標系,不妨設正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當點F是CD的中點時,D1E⊥平面AB1F.(II)當D1E⊥平面AB1F時,F是CD的中點,F(12,1,0)由正方體的結構特征可得:平面AEF的一個法向量為m=(0,0,1),設平面C1EF的一個法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n
=0,即y=-2zx=y,所以取平面C1EF的一個法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因為當把m,n都移向這個二面角內一點時,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因為BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.47.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點.已知OP1=(1,0),則OP2010的坐標為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標不變,縱坐標構成以0為首項,1為公差的等差數列∴OP2010的坐標為(1,2009)故為(1,2009)48.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區域種植草皮,要求相鄰的區域種不同顏色的草皮,現有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.49.在區間[-1,1]上任取兩個數s和t,則關于x的方程x2+sx+t=0的兩根都是正數的概率是[
]A.
B.
C.
D.答案:A50.把平面上一切單位向量歸結到共同的起點,那么這些向量的終點所構成的圖形是
______.答案:把平面上一切單位向量歸結到共同的起點,那么這些向量的終點到起點的距離都等于1,所以,由圓的定義得,這些向量的終點所構成的圖形是半徑為1的圓.第2卷一.綜合題(共50題)1.在復平面內,記復數3+i對應的向量為OZ,若向量OZ饒坐標原點逆時針旋轉60°得到向量OZ所對應的復數為______.答案:向量OZ饒坐標原點逆時針旋轉60°得到向量所對應的復數為(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故為2i.2.(1)把二進制數化為十進制數;(2)把化為二進制數.答案:(1)45,(2)解析:(1)先把二進制數寫成不同位上數字與2的冪的乘積之和的形式,再按照十進制的運算規則計算出結果;(2)根據二進制數“滿二進一”的原則,可以用連續去除或所得商,然后取余數.(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對比可以發現,直接插入排序比冒泡排序更有效一些,執行的操作步驟更少一些..3.參數方程(0<θ<2π)表示()
A.雙曲線的一支,這支過點(1,)
B.拋物線的一部分,這部分過(1,)
C.雙曲線的一支,這支過點(-1,)
D.拋物線的一部分,這部分過(-1,)答案:B4.某公司一年購買某種貨物400噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x萬元,要使一年的總運費與總存儲費用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運費為4萬元/次,一年的總存儲費用為4x萬元,一年的總運費與總存儲費用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當且僅當1600x=4x即x=20噸時,等號成立即每次購買20噸時,一年的總運費與總存儲費用之和最小.故為:20.5.直三棱柱ABC-A1B1C1
中,若CA=a,CB=b,CC1=c,則A1B=______.答案:向量加法的三角形法則,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故為:-a-c+b.6.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()
A.
B.
C.
D.2答案:A7.如圖是為求1~1000的所有偶數的和而設計的一個程序空白框圖,將空白處補上.
①______.②______.答案:本程序的作用是求1~1000的所有偶數的和而設計的一個程序,由于第一次執行循環時的循環變量S初值為0,循環變量S=S+i,計數變量i為2,步長為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.8.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.9.(幾何證明選講)如圖,點A、B、C都在⊙O上,過點C的切線交AB的延長線于點D,若AB=5,BC=3,CD=6,則線段AC的長為______.答案:∵過點C的切線交AB的延長線于點D,∴DC是圓的切線,DBA是圓的割線,根據切割線定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.510.如圖,△ABC內接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()
A.30°
B.40°
C.80°
D.70°
答案:C11.(上海卷理3文8)動點P到點F(2,0)的距離與它到直線x+2=0的距離相等,則P的軌跡方程為______.答案:由拋物線的定義知點P的軌跡是以F為焦點的拋物線,其開口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x12.(幾何證明選做題)如圖,已知:△ABC內接于圓O,點D在OC的延長線上,AD是圓O的切線,若∠B=30°,AC=2,則OD的長為______.答案:∵AD是圓O的切線,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一個等邊三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故為:4.13.“因為對數函數y=logax是增函數(大前提),而y=logx是對數函數(小前提),所以y=logx是增函數(結論).”上面推理的錯誤是()
A.大前提錯導致結論錯
B.小前提錯導致結論錯
C.推理形式錯導致結論錯
D.大前提和小前提都錯導致結論錯答案:A14.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且對任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).給出以下四個結論:
(1)f(1,2)=3;
(2)f(1,5)=9;
(3)f(5,1)=16;
(4)f(5,6)=26.其中正確的為______.答案:∵f(1,1)=1,f(m,n+1)=f(m,n)+2;f(m+1,1)=2f(m,1)(1)f(1,2)=f(1,1)+2=3;故(1)正確(2)f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9;故(2)正確(3)f(5,1)=2f(4,1)=4f(3,1)=8f(2,1)=16f(1,1)=16;故(3)正確(4)f(5,6)=f(5,5)+2=f(5,4)+4=f(5,3)+6=f(5,2)=8=f(5,1)+10=16+10=26;故(4)正確故為(1)(2)(3)(4)15.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.16.如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.17.長為3的線段AB的端點A、B分別在x軸、y軸上移動,,則點C的軌跡是()
A.線段
B.圓
C.橢圓
D.雙曲線答案:C18.已知直線經過點A(0,4)和點B(1,2),則直線AB的斜率為()
A.3
B.-2
C.2
D.不存在答案:B19.選做題:如圖,點A、B、C是圓O上的點,且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π20.在直角坐標系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實數m=______.答案:把AB、AC平移,使得點A與原點重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時,AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時,AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時,AC?BC=0,即2+m2-m=0,此方程無解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或021.根據一組數據判斷是否線性相關時,應選用(
)
A.散點圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A22.某計算機程序每運行一次都隨機出現一個五位的二進制數A=
,其中A的各位數中,a1=1,ak(k=2,3,4,5)出現0的概率為,出現1的概率為.記ξ=a1+a2+a3+a4+a5,當程序運行一次時,ξ的數學期望Eξ=()
A.
B.
C.
D.答案:C23.隨機變量ξ的分布列為
ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.24.△ABC是邊長為1的正三角形,那么△ABC的斜二測平面直觀圖△A′B′C′的面積為(
)
A.
B.
C.
D.答案:D25.某工廠生產A,B,C三種不同型號的產品,產品數量之比依次為2:3:5.現用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產品有16件,則此樣本的容量為()
A.40
B.80
C.160
D.320答案:B26.正態曲線下、橫軸上,從均值到+∞的面積為______答案:由正態曲線的對稱性特點知,曲線與x軸之間的面積為1,所以從均數到的面積為整個面積的一半,即50%.填:0.5.27.畫出《數學3》第一章“算法初步”的知識結構圖.答案:《數學3》第一章“算法初步”的知識包括:算法、程序框圖、算法的三種基本邏輯結構和框圖表示、基本算法語句.算法的三種基本邏輯結構和框圖表示就是順序結構、條件結構、循環結構,基本算法語句是指輸入語句、輸出語句、賦值語句、條件語句和循環語句.故《數學3》第一章“算法初步”的知識結構圖示意圖如下:28.若關于x的一元二次實系數方程x2+px+q=0有一個根為1+i(i是虛數單位),則p+q的值是()
A.-1
B.0
C.2
D.-2答案:B29.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為______.答案:設直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|
|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.30.如圖,直線AB經過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.
(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED=12,⊙O的半徑為3,求OA的長.答案:(1)如圖,連接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切線;(2)∵BC是圓O切線,且BE是圓O割線,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,設BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).31.將程序補充完整
INPUT
x
m=xMOD2
IF______THEN
PRINT“x是偶數”
ELSE
PRINT“x是奇數”
END
IF
END.答案:本程序的作用是判斷出輸入的數是奇數還是偶數,由其邏輯關系知,若邏輯是“是”則輸出“x是偶數”,若邏輯是“否”,則輸出“x是奇數”故判斷條件應為m=0故為m=032.有一個正四棱錐,它的底面邊長與側棱長均為a,現用一張正方形包裝紙將其完全包住(不能裁剪紙,但可以折疊),那么包裝紙的最小邊長應為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當正四棱錐沿底面將側面都展開時如圖所示:分析易知當以PP′為正方形的對角線時,所需正方形的包裝紙的面積最小,此時邊長最小.設此時的正方形邊長為x則:(PP′)2=2x2,又因為PP′=a+2×32a=a+3a,∴(
a+3a)2=2x2,解得:x=6+22a.故選A33.設甲、乙兩名射手各打了10發子彈,每發子彈擊中環數如下:甲:10,7,7,10,8,9,9,10,5,10;
乙:8,7,9,10,9,8,8,9,8,9則甲、乙兩名射手的射擊技術評定情況是()
A.甲比乙好
B.乙比甲好
C.甲、乙一樣好
D.難以確定答案:B34.一個單位有職工800人,其中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級職稱的職工為10人,則樣本容量為()
A.10
B.20
C.40
D.50答案:C35.
已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()
A.
B.
C.
D.答案:D36.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,則三條邊長分別為|a|、|b|、|c|的三角形()
A.是銳角三角形
B.是直角三角形
C.是鈍角三角形
D.不存在答案:B37.(坐標系與參數方程)
從極點O作直線與另一直線ρcosθ=4相交于點M,在OM上取一點P,使OM?OP=12.
(1)求點P的軌跡方程;
(2)設R為直線ρcosθ=4上任意一點,試求RP的最小值.答案:(1)設動點P的坐標為(ρ,θ),M的坐標為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線l的解析式為x=4,所以圓與x軸的交點坐標為(3,0),易得RP的最小值為138.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()
A.
B.2
C.4
D.12答案:B39.當a>0時,設命題P:函數f(x)=x+ax在區間(1,2)上單調遞增;命題Q:不等式x2+ax+1>0對任意x∈R都成立.若“P且Q”是真命題,則實數a的取值范圍是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函數f(x)=x+ax在區間(1,2)上單調遞增;∴f′(x)≥0在區間(1,2)上恒成立,∴1-ax2≥0在區間(1,2)上恒成立,即a≤x2在區間(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0對任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命題,則P且Q都是真命題,故由①②的交集得:0<a≤1,則實數a的取值范圍是0<a≤1.故選A.40.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三點,n=(1,1,1),則以n為方向向量的直線l與平面ABC的關系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由題意,AB=(-1,1,0),BC=(0,-1,1)∵n?AB=0,n?BC=0∴以n為方向向量的直線l與平面ABC垂直故選A.41.在如圖所示的莖葉圖中,甲、乙兩組數據的中位數分別是______.答案:由莖葉圖可得甲組共有9個數據中位數為45乙組共9個數據中位數為46故為45、4642.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()
A.4
B.15
C.7
D.3答案:D43.對某種電子元件進行壽命跟蹤調查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數量與壽命在300~600小時的電子元件的數量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數量與壽命在300~600小時的電子元件的數量的比大約是0.2:0.8=14故選C44.不等式x+x3≥0的解集是(
)。答案:{x|x≥0}45.在空間直角坐標系中,點,過點P作平面xOy的垂線PQ,則Q的坐標為()
A.
B.
C.
D.答案:D46.若純虛數z滿足(2-i)z=4-bi,(i是虛數單位,b是實數),則b=()
A.-2
B.2
C.-8
D.8答案:C47.a=(2,1),b=(3,4),則向量a在向量b方向上的投影為______.答案:根據向量在另一個向量上投影的定義向量a在向量b方向上的投影為a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故為:248.設直線過點(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()
A.±
B.±2
C.±2
D.±4答案:B49.正方體AC1中,S,T分別是棱AA1,A1B1上的點,如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°50.已知P(x,y)是橢圓x24+y2=1上的點,求M=x+2y的取值范圍.答案:∵x24+y2=1的參數方程是x=2cosθy=sinθ(θ是參數)∴設P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)
(7分)∴M=x+2y的取值范圍是[-22,22].(10分)第3卷一.綜合題(共50題)1.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C2.四支足球隊爭奪冠、亞軍,不同的結果有()
A.8種
B.10種
C.12種
D.16種答案:C3.用反證法證明命題“如果a>b,那么a3>b3“時,下列假設正確的是()
A.a3<b3
B.a3<b3或a3=b3
C.a3<b3且a3=b3
D.a3>b3答案:B4.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標是
______.答案:根據拋物線方程可求得焦點坐標為(0,1)根據拋物線定義可知點p到焦點的距離與到準線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標是(±6,9)故為:(±6,9)5.已知曲線,
θ∈[0,2π)上一點P到點A(-2,0)、B(2,0)的距離之差為2,則△PAB是()
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.等腰三角形答案:C6.橢圓上有一點P,F1,F2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()
A.3個
B.4個
C.6個
D.8個答案:C7.某批n件產品的次品率為1%,現在從中任意地依次抽出2件進行檢驗,問:
(1)當n=100,1000,10000時,分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)
(2)根據(1),談談你對超幾何分布與二項分布關系的認識.答案:(1)當n=100時,如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產品中次品數為1,正品數是99,從100件產品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當n=1000時,如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產品中次品數為10,正品數是990,從1000件產品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產品中次品數為1000,正品數是9000,從10000件產品里抽2件,總的可能是C100002,次品的可能是C1001C99001.所以概率為C1100?C19900C210000≈0.0198.(2)對超幾何分布與二項分布關系的認識:共同點:每次試驗只有兩種可能的結果:成功或失敗.不同點:1、超幾何分布是不放回抽取,二項分布是放回抽取;
2、超幾何分布需要知道總體的容量,二項分布不需要知道總體容量,但需要知道“成功率”;聯系:當產品的總數很大時,超幾何分布近似于二項分布.8.由圓C:x=2+cosθy=3+sinθ(θ為參數)求圓的標準方程.答案:圓的參數方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據同角的三角函數關系式cos2θ+sin2θ=1,可得到標準方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.9.若F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.10.(1+x)6的各二項式系數的最大值是______.答案:根據二項展開式的性質可得,(1+x)6的各二項式系數的最大值C36=20故為:2011.點M的直角坐標是(,-1),在ρ≥0,0≤θ<2π的條件下,它的極坐標是()
A.(2,)
B.(2,)
C.(,)
D.(,)答案:A12.有一個容量為80的樣本,數據的最大值是140,最小值是51,組距為10,則可以分為(
)
A.10組
B.9組
C.8組
D.7組答案:B13.某班試用電子投票系統選舉班干部候選人.全班k名同學都有選舉權和被選舉權,他們的編號分別為1,2,…,k,規定:同意按“1”,不同意(含棄權)按“0”,令aij=1,第i號同學同意第j號同學當選.0,第i號同學不同意第j號同學當選.其中i=1,2,…,k,且j=1,2,…,k,則同時同意第1,2號同學當選的人數為()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學生是否同意第1號同學當選依次由a11,a21,a31,…,ak1來確定(aij=1表示同意,aij=0表示不同意或棄權),是否同意第2號同學當選依次由a12,a22,…,ak2確定,而是否同時同意1,2號同學當選依次由a11a12,a21a22,…,ak1ak2確定,故同時同意1,2號同學當選的人數為a11a12+a21a22+…+ak1ak2,故選C.14.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.15.若隨機變量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故為:31616.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()
A.3
B.
C.
D.4答案:B17.點(2,-2)的極坐標為______.答案:∵點(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(2,-2)的極坐標為(22,-π4)故為(22,-π4).18.已知正數x,y,z滿足5x+4y+3z=10.
(1)求證:25x
24y+3z+16y23z+5x+9z25x+4y≥5;
(2)求9x2+9y2+z2的最小值.答案:(1)根據柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因為5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根據均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,當且僅當x2=y2+z2時,等號成立.根據柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即
(x2+y2+z2)≥2,當且僅當x5=y4=z3時,等號成立.綜上,9x2+9y2+z2≥2?32=18.19.若f(x)是定義在R上的函數,滿足對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,則f(8)=______.答案:由題意可知:對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故為:81.20.設拋物線y2=8x上一點P到y軸的距離是4,則點P到該拋物線焦點的距離是()A.4B.6C.8D.12答案:拋物線y2=8x的準線為x=-2,∵點P到y軸的距離是4,∴到準線的距離是4+2=6,根據拋物線的定義可知點P到該拋物線焦點的距離是6故選B21.一個口袋內有5個白球和3個黑球,任意取出一個,如果是黑球,則這個黑球不放回且另外放入一個白球,這樣繼續下去,直到取出的球是白球為止.求取到白球所需的次數ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256
P(ξ=1)=3256
∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925622.設f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)當n=1,2,3,4時,比較f(n)與g(n)的大小.
(2)根據(1)的結果猜測一個一般性結論,并加以證明.答案:(1)當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,(2)根據上述結論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.23.某工廠生產產品,用傳送帶將產品送到下一道工序,質檢人員每隔十分鐘在傳送帶的某一個位置取一件檢驗,則這種抽樣方法是()A.簡單隨機抽樣B.系統抽樣C.分層抽樣D.非上述答案答案:本題符合系統抽樣的特征:總體中各單位按一定順序排列,根據樣本容量要求確定抽選間隔,然后隨機確定起點,每隔一定的間隔抽取一個單位的一種抽樣方式.故選B.24.在極坐標系中,曲線ρ=4cosθ圍成的圖形面積為()
A.π
B.4
C.4π
D.16答案:C25.若雙曲線與橢圓x216+y225=1有相同的焦點,與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)26.試指出函數y=3x的圖象經過怎樣的變換,可以得到函數y=(13)x+1+2的圖象.答案:把函數y=3x的圖象經過3次變換,可得函數y=(13)x+1+2的圖象,步驟如下:y=3x沿y軸對稱y=(13)x左移一個單位y=(13)x+1上移2個單位y=(13)x+1+2.27.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當k=3時兩條直線平行,當k≠3時有2=-24-k≠3
所以
k=5故為:3或5.28.位于直角坐標原點的一個質點P按下列規則移動:質點每次移動一個單位,移動的方向向左或向右,并且向左移動的概率為,向右移動的概率為,則質點P移動五次后位于點(1,0)的概率是()
A.
B.
C.
D.答案:D29.圓x=1+cosθy=1+sinθ(θ為參數)的標準方程是
______,過這個圓外一點P(2,3)的該圓的切線方程是
______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數)消去參數θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數)的標準方程是(x-1)2+(y-1)2=1;∵這個圓外一點P(2,3)的該圓的切線,當切線斜率不存在時,顯然x=2符合題意;當切線斜率存在時,設切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=
1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.30.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實數λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:031.春天到了,曲曲折折的荷塘上面,彌望的是田田的葉子,已知每一天荷葉覆蓋水面的面積是前一天的2倍,若荷葉20天可以完全長滿池塘水面,當荷葉剛好覆蓋水面面積的一半時,荷葉已生長了()A.10天B.15天C.19天D.20天答案:設荷葉覆蓋水面的初始面積為a,則x天后荷葉覆蓋水面的面積y=a?2x(x∈N+),根據題意,令2(a?2x)=a?220,解得x=19,故選C.32.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b
由|a|=|b|=2,∠AOB=60°,得:a2=b2=
4,a?b
=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π633.若4名學生和3名教師站在一排照相,則其中恰好有2名教師相鄰的站法有______種.(用數字作答)答案:4名學生和3名教師站在一排照相,則其中恰好有2名教師相鄰,所以第一步應先取兩個老師且綁定有C23×A22=6種方法,第二步將四名學生全排列,共有4!=24種方法,第三步將綁定的兩位老師與剩下的一位老師看作兩個元素,插入四個學生隔開的五個空中,共有A25=20種方法故總的站法有6×24×20=2880種故為288034.用反證法證明命題“三角形的內角至多有一個鈍角”時,假設正確的是()
A.假設至少有一個鈍角
B.假設沒有一個鈍角
C.假設至少有兩個鈍角
D.假設沒有一個鈍角或至少有兩個鈍角答案:C35.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點,則實數m的取值范圍是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C36.某小組有3名女生、4名男生,從中選出3名代表,要求至少女生與男生各有一名,共有______種不同的選法.(要求用數字作答)答案:由題意知本題是一個分類計數問題,要求至少女生與男生各有一名有兩個種不同的結果,即一個女生兩個男生和一個男生兩個女生,∴共有C31C42+C32C41=30種結果,故為:3037.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,
cos〈,〉=.
(1)建立適當的空間坐標系,寫出點E的坐標;
(2)在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土方工程入股協議書合同
- 洗鞋店加盟合同協議書
- 2025標準商業地產買賣合同模板
- 夫妻分居合同協議書模板
- 洗衣機賣方合同協議書
- 2025農資化肥購銷合同范本
- 合同后面附廉潔協議書
- 2025標準合同終止勞動合同證明書范本
- 協議書是屬于合同嗎
- 林木承包合同協議書
- 自然辯證法論述題146題帶答案(可打印版)
- 特殊作業安全管理監護人專項培訓課件
- 《剪映專業版:短視頻創作案例教程(全彩慕課版)》 課件 第7章 創作產品推
- 電子工程師考試試題
- 公益慈善基金會的品牌建設與傳播
- 2024年植保服務合同正規范本
- 《胖東來企業文化指導手冊》
- 中級工職業技能
- 浙江省寧波市鄞州區2023-2024學年八年級下學期期末數學試題
- 新行政訴訟法課件講座
- 2024屆江蘇省南京東山外國語學校高考三模數學試卷(原卷版)
評論
0/150
提交評論