數控編程中的數學處理_第1頁
數控編程中的數學處理_第2頁
數控編程中的數學處理_第3頁
數控編程中的數學處理_第4頁
數控編程中的數學處理_第5頁
已閱讀5頁,還剩33頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

3數控編程中的數學處理學習目標了解數控編程前數學處理的主要內容和基本的方法掌握利用三角函數計算基點坐標的方法了解非圓曲線節點坐標的概念掌握輔助坐標點的計算方法3.1編程中數學處理的主要內容在加工零件圖形之前,我們必須要先編程,但是在編程的過程中我們通常會遇到某些坐標點的值在圖形中是沒有計算出來的,這時候我們就要涉及到數值處理。數學處理的主要任務就是根據圖紙數據求出編程所需的數據。另外,一般數控系統只能加工直線和圓弧,當工件表面是由其它復雜曲線或曲面構成時,首先要用直線和圓弧去擬合工件輪廓,這也是數學處理的任務之一。數值處理主要包括以下內容:1.基點和節點的坐標計算2.刀位點軌跡的計算3.輔助計算基點和節點的坐標計算零件的輪廓是由許多不同的幾何元素組成。如直線、圓弧、二次曲線及列表點曲線等。各幾何元素間的聯結點稱為基點,如兩直線的交點,直線和圓弧或圓弧和圓弧之間的交點與切點,顯然,相鄰基點間只能是一個幾何元素。基點例:圖所示零件中,A、B、C、D、E為基點。A、B、D、E的坐標值從圖中很容易找出,C點是直線與圓弧切點,要聯立方程求解。以B點為計算坐標系原點,聯立下列方程:

可求得(64.2786,39.5507),換算到以A點為原點的編程坐標系中,C點坐標為(64.2786,51.5507)。對于由直線與直線或直線與圓弧構成的平面輪廓零件,由于目前一般機床都有直線、圓弧插補的功能,數值計算較為簡單。當零件的形狀是由直線段或圓弧之外的其他曲線構成,而數控裝置又不具備該曲線的插補功能時,其數值計算就比較復雜。將組成零件輪廓曲線,按數控系統插補功能的要求,在滿足允許的編程誤差的條件下,用若干直線段或圓弧來逼近給定的曲線,逼近線段的交點或切點稱為節點。

對非圓曲線進行數學處理,實質就是計算各節點坐標。如圖所示的曲線用直線逼近時,其交點A、B、C、D、E、F等即為節點。

編寫程序時,應按節點劃分程序段。逼近線段的近似區間愈大,則節點數目愈少,相應地程序段數目也會減少,但逼近線段的誤差d應小于或等于編程允許誤差d允,即d≤d允。考慮到工藝系統及計算誤差的影響,d允一般取零件公差的1/5~1/10。(2)刀位點軌跡的計算

刀位點是指在加工程序編制中,用以表示刀具特征的點,也是對刀和加工的基準點。對于車刀,各類車刀的刀位點。

刀位點是標志刀具所處不同位置的坐標點,不同類型刀具的刀位點不同。對于具有刀具半徑補償功能的數控機床,只要在編寫程序時,在程序的適當位置寫入建立刀具補償的有關指令,就可以保證在加工過程中,使刀位點按一定的規則自動偏離編程軌跡,達到正確加工的目的。這時可直接按零件輪廓形狀,計算各基點和節點坐標,并作為編程時的坐標數據。當機床所采用的數控系統不具備刀具半徑補償功能時,編程時,需對刀具的刀位點軌跡進行數值計算,按零件輪廓的等距線編程。例如簡單的數控車床,編程時就需要做某些偏置計算。(3)輔助計算輔助計算包括增量計算及輔助程序段的數值計算

輔助程序段是指刀具從對刀點到切人點或從切出點返回到對刀點而特意安排的程序段。切入點位置的選擇應依據零件加工余量而定,適當離開零件一段距離。切出點位置的選擇,應避免刀具在快速返回時發生撞刀。使用刀具補償功能時,建立刀補的程序段應在加工零件之前寫入,加工完成后應取消刀具補償。某些零件的加工,要求刀具“切向”切入和“切向”切出。以上程序段的安排,在繪制走刀路線時,即應明確地表達出來。數值計算時,按照走刀路線的安排,計算出各相關點的坐標。2、基點坐標的計算

零件輪廓或刀位點軌跡的基點坐標計算,一般采用代數法或幾何法。代數法是通過列方程組的方法求解基點坐標,這種方法雖然已根據輪廓形狀,將直線和圓弧的關系歸納成若干種方式,并變成標準的計算形式,方便了計算機求解,但手工編程時采用代數法進行數值計算還是比較繁瑣。根據圖形間的幾何關系利用三角函數法求解基點坐標,計算比較簡單、方便,與列方程組解法比較,工作量明顯減少。要求重點掌握三角函數法求解基點坐標。對于由直線和圓弧組成的零件輪廓,采用手工編程時,常利用直角三角形的幾何關系進行基點坐標的數值計算,圖3-1為直角三角形的幾何關系,三角函數計算公式列于表3-1。圖3-1直角三角形的幾何關系

表3-1直角三角形中的幾何關系3、非圓曲線節點坐標的計算(1)非圓曲線節點坐標計算的主要步驟數控加工中把除直線與圓弧之外可以用數學方程式表達的平面輪廓曲線,稱為非圓曲線。其數學表達式可以直角坐標的形式給出,也可以是以極坐標形式給出,還可以是以參數方程的形式給出。通過坐標變換,后面兩種形式的數學表達式,可以轉換為直角坐標表達式。非圓曲線類零件包括平面凸輪類、樣板曲線、圓柱凸輪以及數控車床上加工的各種以非圓曲線為母線的回轉體零件等等。其數值計算過程,一般可按以下步驟進行。①選擇插補方式。即應首先決定是采用直線段逼近非圓曲線,還是采用圓弧段或拋物線等二次曲線逼近非圓曲線。②確定編程允許誤差,即應使d≤d允。③選擇數學模型,確定計算方法。在決定采取什么算法時,主要應考慮的因素有兩條,其一是盡可能按等誤差的條件,確定節點坐標位置,以便最大程度地減少程序段的數目;其二是盡可能尋找一種簡便的算法,簡化計算機編程,省時快捷。④根據算法,畫出計算機處理流程圖。⑤用高級語言編寫程序,上機調試程序,并獲得節點坐標數據。(2)常用的算法用直線段逼近非圓曲線,目前常用的節點計算方法有等間距法、等程序段法、等誤差法和伸縮步長法;用圓弧段逼近非圓曲線,常用的節點計算方法有曲率圓法、三點圓法、相切圓法和雙圓弧法。用直線段逼近非圓曲線時節點的計算

割線逼近弦線逼近切線逼近第5章數控加工程序編制基礎CNC5.4數控編程中的數學處理①等間距直線段逼近法——等間距法就是將某一坐標軸劃分成相等的間距。如圖3-2所示。圖3-2等間距法直線段逼近②等程序段法直線逼近的節點計算——等程序段法就是使每個程序段的線段長度相等。如圖3-3所示。

圖3-3等程序段法直線段逼近③等誤差法直線段逼近得節點計算——任意相鄰兩節點間的逼近誤差為等誤差。各程序段誤差d均相等,程序段數目最少。但計算過程比較復雜,必須由計算機輔助才能完成計算。在采用直線段逼近非圓曲線的擬合方法中,是一種較好的擬合方法。圖3-4等誤差法直線段逼近④曲率圓法圓弧逼近的節點計算——曲率圓法是用彼此相交的圓弧逼近非圓曲線。其基本原理是從曲線的起點開始,作與曲線內切的曲率圓,求出曲率圓的中心。如圖3-5所示。圖3-5曲率圓法圓弧段逼近⑤三點圓法圓弧逼近的節點計算——三點圓法是在等誤差直線段逼近求出各節點的基礎上,通過連續三點作圓弧,并求出圓心點的坐標或圓的半徑,如圖3-6所示。⑥相切圓法圓弧逼近的節點計算——如圖3-7所示。采用相切圓法,每次可求得兩個彼此相切的圓弧,由于在前一個圓弧的起點處與后一個終點處均可保證與輪廓曲線相切,因此,整個曲線是由一系列彼此相切的圓弧逼近實現的。可簡化編程,但計算過程繁瑣。

4、列表曲線型值點坐標的計算

實際零件的輪廓形狀,除了可以用直線、圓弧或其他非圓曲線組成之外,有些零件圖的輪廓形狀是通過實驗或測量的方法得到的。零件的輪廓數據在圖樣上是以坐標點的表格形式給出,這種由列表點(又稱為型值點)給出的輪廓曲線稱為列表曲線。在列表曲線的數學處理方面,常用的方法有牛頓插值法、三次樣條曲線擬合、圓弧樣條擬合與雙圓弧樣條擬合等。由于以上各種擬合方法在使用時,往往存在著某種局限性,目前處理列表曲線的方法通常是采用二次擬合法。為了在給定的列表點之間得到一條光滑的曲線,對列表曲線逼近一般有以下要求:①方程式表示的零件輪廓必須通過列表點。②方程式給出的零件輪廓與列表點表示的輪廓凹凸性應一致,即不應在列表點的凹凸性之外再增加新的拐點。③光滑性。為使數學描述不過于復雜,通常一個列表曲線要用許多參數不同的同樣方程式來描述,希望在方程式的兩兩連接處有連續的一階導數或二階導數,若不能保證一階導數連續,則希望連接處兩邊一階導數的差值應盡量小。5、數控車床使用假想刀尖點時偏置計算在數控車削加工種,為了對刀的方便,總是以“假想刀尖”點來對刀。所謂假想刀尖點,是指圖3-8a中M點的位置。由于刀尖圓弧的影響,僅僅使用刀具長度補償,而不對刀尖圓弧半徑進行補償,在車削錐面或圓弧面時,會產生欠切的情況,如圖3-9所示。圖3-8假想刀尖點編程時的補償計算

圖3-9欠切與過切現象

6、簡單立體型面零件的數值計算用球頭刀或圓弧盤銑刀加工立體型面零件,刀痕在行間構成了被稱為切殘量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論