陜西省咸陽市武功2023年中考押題數(shù)學預測卷含解析及點睛_第1頁
陜西省咸陽市武功2023年中考押題數(shù)學預測卷含解析及點睛_第2頁
陜西省咸陽市武功2023年中考押題數(shù)學預測卷含解析及點睛_第3頁
陜西省咸陽市武功2023年中考押題數(shù)學預測卷含解析及點睛_第4頁
陜西省咸陽市武功2023年中考押題數(shù)學預測卷含解析及點睛_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.一次函數(shù)與反比例函數(shù)在同一個坐標系中的圖象可能是()A. B. C. D.2.如圖,數(shù)軸上有三個點A、B、C,若點A、B表示的數(shù)互為相反數(shù),則圖中點C對應的數(shù)是()A.﹣2 B.0 C.1 D.43.如圖,在矩形ABCD中,O為AC中點,EF過O點且EF⊥AC分別交DC于F,交AB于點E,點G是AE中點且∠AOG=30°,則下列結論正確的個數(shù)為(

)DC=3OG;(2)OG=BC;(3)△OGE是等邊三角形;(4).A.1 B.2 C.3 D.44.某機構調查顯示,深圳市20萬初中生中,沉迷于手機上網的初中生約有16000人,則這部分沉迷于手機上網的初中生數(shù)量,用科學記數(shù)法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人5.如圖,⊙O的半徑為6,直徑CD過弦EF的中點G,若∠EOD=60°,則弦CF的長等于()A.6 B.6 C.3 D.96.已知二次函數(shù)y=x2+bx﹣9圖象上A、B兩點關于原點對稱,若經過A點的反比例函數(shù)的解析式是y=,則該二次函數(shù)的對稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣7.濟南市某天的氣溫:-5~8℃,則當天最高與最低的溫差為()A.13 B.3 C.-13 D.-38.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.9.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數(shù)的和為7,未伸出手指數(shù)的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數(shù)應該分別為()A.1,2 B.1,3C.4,2 D.4,310.下列分式是最簡分式的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:(π﹣3)0+(﹣)﹣1=_____.12.在今年的春節(jié)黃金周中,全國零售和餐飲企業(yè)實現(xiàn)銷售額約9260億元,比去年春節(jié)黃金周增長10.2%,將9260億用科學記數(shù)法表示為_____________.13.一個多邊形的內角和比它的外角和的3倍少180°,則這個多邊形的邊數(shù)是______.14.若關于x的方程有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是______.15.計算的結果是_____16.若關于x、y的二元一次方程組的解滿足x+y>0,則m的取值范圍是____.三、解答題(共8題,共72分)17.(8分)解方程:(x﹣3)(x﹣2)﹣4=1.18.(8分)在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).畫出△ABC關于軸對稱的△A1B1C1;以M點為位似中心,在網格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1.19.(8分)計算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.20.(8分)我國南水北調中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結果精確到0.1米,參考數(shù)據:sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)21.(8分)(1)計算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點D,E分別是邊BC,AC的中點,過點E作EF⊥DE,交BC的延長線于點F,求∠F的度數(shù).22.(10分)據城市速遞報道,我市一輛高為2.5米的客車,卡在快速路引橋上高為2.55米的限高桿的上端,已知引橋的坡角∠ABC為14°,請結合示意圖,用你學過的知識通過數(shù)據說明客車不能通過的原因.(參考數(shù)據:sin14°=0.24,cos14°=0.97,tan14°=0.25)23.(12分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機抽出兩張卡片,求抽到A,B兩班的概率.24.當x取哪些整數(shù)值時,不等式與4﹣7x<﹣3都成立?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】當k>0時,一次函數(shù)y=kx﹣k的圖象過一、三、四象限,反比例函數(shù)y=的圖象在一、三象限,∴A、C不符合題意,B符合題意;當k<0時,一次函數(shù)y=kx﹣k的圖象過一、二、四象限,反比例函數(shù)y=的圖象在二、四象限,∴D不符合題意.故選B.2、C【解析】【分析】首先確定原點位置,進而可得C點對應的數(shù).【詳解】∵點A、B表示的數(shù)互為相反數(shù),AB=6∴原點在線段AB的中點處,點B對應的數(shù)為3,點A對應的數(shù)為-3,又∵BC=2,點C在點B的左邊,∴點C對應的數(shù)是1,故選C.【點睛】本題主要考查了數(shù)軸,關鍵是正確確定原點位置.3、C【解析】∵EF⊥AC,點G是AE中點,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等邊三角形,故(3)正確;設AE=2a,則OE=OG=a,由勾股定理得,AO=,∵O為AC中點,∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四邊形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正確;∵OG=a,BC=,∴OG≠BC,故(2)錯誤;∵S△AOE=a?=,SABCD=3a?=32,∴S△AOE=SABCD,故(4)正確;綜上所述,結論正確是(1)(3)(4)共3個,故選C.【點睛】本題考查了矩形的性質,等邊三角形的判定、勾股定理的應用等,正確地識圖,結合已知找到有用的條件是解答本題的關鍵.4、A【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】用科學記數(shù)法表示16000,應記作1.6×104,故選A.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、B【解析】

連接DF,根據垂徑定理得到,得到∠DCF=∠EOD=30°,根據圓周角定理、余弦的定義計算即可.【詳解】解:連接DF,∵直徑CD過弦EF的中點G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直徑,

∴∠CFD=90°,

∴CF=CD?cos∠DCF=12×=,故選B.【點睛】本題考查的是垂徑定理的推論、解直角三角形,掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解題的關鍵.6、D【解析】

設A點坐標為(a,),則可求得B點坐標,把兩點坐標代入拋物線的解析式可得到關于a和b的方程組,可求得b的值,則可求得二次函數(shù)的對稱軸.【詳解】解:∵A在反比例函數(shù)圖象上,∴可設A點坐標為(a,).∵A、B兩點關于原點對稱,∴B點坐標為(﹣a,﹣).又∵A、B兩點在二次函數(shù)圖象上,∴代入二次函數(shù)解析式可得:,解得:或,∴二次函數(shù)對稱軸為直線x=﹣.故選D.【點睛】本題主要考查二次函數(shù)的性質,待定系數(shù)法求二次函數(shù)解析式,根據條件先求得b的值是解題的關鍵,注意掌握關于原點對稱的兩點的坐標的關系.7、A【解析】由題意可知,當天最高溫與最低溫的溫差為8-(-5)=13℃,故選A.8、D【解析】

找到從正面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.

故選A.【點睛】本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.9、A【解析】試題分析:通過猜想得出數(shù)據,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規(guī)則,得出一般結論.解題關鍵是對號入座不要找錯對應關系.10、C【解析】解:A.,故本選項錯誤;B.,故本選項錯誤;C.,不能約分,故本選項正確;D.,故本選項錯誤.故選C.點睛:本題主要考查對分式的基本性質,約分,最簡分式等知識點的理解和掌握,能根據分式的基本性質正確進行約分是解答此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1【解析】

先計算0指數(shù)冪和負指數(shù)冪,再相減.【詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【點睛】考查了0指數(shù)冪和負指數(shù)冪,解題關鍵是運用任意數(shù)的0次冪為1,a-1=.12、9.26×1011【解析】試題解析:9260億=9.26×1011故答案為:9.26×1011點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于1時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).13、7【解析】根據多邊形內角和公式得:(n-2).得:14、a>﹣.【解析】試題分析:已知關于x的方程2x2+x﹣a=0有兩個不相等的實數(shù)根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考點:根的判別式.15、【解析】【分析】根據二次根式的運算法則進行計算即可求出答案.【詳解】==,故答案為.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則.16、m>-1【解析】

首先解關于x和y的方程組,利用m表示出x+y,代入x+y>0即可得到關于m的不等式,求得m的范圍.【詳解】解:,①+②得1x+1y=1m+4,則x+y=m+1,根據題意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【點睛】本題考查的是解二元一次方程組和解一元一次不等式,解答此題的關鍵是把m當作已知數(shù)表示出x+y的值,再得到關于m的不等式.三、解答題(共8題,共72分)17、x1=,x2=【解析】試題分析:方程整理為一般形式,找出a,b,c的值,代入求根公式即可求出解.試題解析:解:方程化為,,,.>1..即,.18、(1)詳見解析;(2)詳見解析.【解析】

試題分析:(1)直接利用關于x軸對稱點的性質得出對應點位置,進而得出答案;(2)直接利用位似圖形的性質得出對應點位置,進而得出答案;試題解析:(1)如圖所示:△A1B1C1,即為所求;(2)如圖所示:△A2B2C2,即為所求;考點:作圖-位似變換;作圖-軸對稱變換19、2【解析】

先根據0次冪的意義、絕對值的意義、二次根式的除法、負整數(shù)指數(shù)冪的意義化簡,然后進一步計算即可.【詳解】解:原式=2+2﹣+2=2﹣2+2=2.【點睛】本題考查了0次冪的意義、絕對值的意義、二次根式的除法、負整數(shù)指數(shù)冪的意義,熟練掌握各知識點是解答本題的關鍵.20、工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.【解析】解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).∴(米).∴工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.在Rt△BAE和Rt△DEC中,應用正切函數(shù)分別求出AE和CE的長即可求得AC的長.21、(1)﹣1+3;(2)30°.【解析】

(1)根據零指數(shù)冪、絕對值、二次根式的性質求出每一部分的值,代入求出即可;(2)根據平行線的性質可得∠EDC=∠B=,根據三角形內角和定理即可求解;【詳解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等邊三角形,∴∠B=60°,∵點D,E分別是邊BC,AC的中點,∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【點睛】(1)主要考查零指數(shù)冪、絕對值、二次根式的性質;(2)考查平行線的性質和三角形內角和定理.22、客車不能通過限高桿,理由見解析【解析】

根據DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根據cos∠EDF=,求出DF的值,即可判斷.【詳解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=,∴DF=DE?cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高桿頂端到橋面的距離DF為2.1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論