




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.62.下列幾何體是棱錐的是()A. B. C. D.3.剪紙是我國傳統的民間藝術.下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.4.用半徑為8的半圓圍成一個圓錐的側面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.85.設a,b是常數,不等式的解集為,則關于x的不等式的解集是()A. B. C. D.6.如果兩圓只有兩條公切線,那么這兩圓的位置關系是()A.內切 B.外切 C.相交 D.外離7.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=8.如圖是某幾何體的三視圖,下列判斷正確的是()A.幾何體是圓柱體,高為2 B.幾何體是圓錐體,高為2C.幾何體是圓柱體,半徑為2 D.幾何體是圓錐體,直徑為29.如圖,點E在△DBC的邊DB上,點A在△DBC內部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④10.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規和三角板這兩種工具),以下是甲、乙兩同學的作業:甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經過點P;②調整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業,下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對二、填空題(共7小題,每小題3分,滿分21分)11.不等式1﹣2x<6的負整數解是___________.12.因式分解:=___.13.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形14.若一個扇形的圓心角為60°,面積為6π,則這個扇形的半徑為__________.15.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經過圓心O,點C是折疊后的上一動點,連接并延長BC交⊙O于點D,點E是CD的中點,連接AC,AD,EO.則下列結論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)16.不等式組的非負整數解的個數是_____.17.計算(﹣a2b)3=__.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯結PD、AD.(1)求△ABC的面積;(2)設PB=x,△APD的面積為y,求y關于x的函數關系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長.19.(5分)定義:對于給定的二次函數y=a(x﹣h)2+k(a≠0),其伴生一次函數為y=a(x﹣h)+k,例如:二次函數y=2(x+1)2﹣3的伴生一次函數為y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函數y=(x﹣1)2﹣4,則其伴生一次函數的表達式為_____;(2)試說明二次函數y=(x﹣1)2﹣4的頂點在其伴生一次函數的圖象上;(3)如圖,二次函數y=m(x﹣1)2﹣4m(m≠0)的伴生一次函數的圖象與x軸、y軸分別交于點B、A,且兩函數圖象的交點的橫坐標分別為1和2,在∠AOB內部的二次函數y=m(x﹣1)2﹣4m的圖象上有一動點P,過點P作x軸的平行線與其伴生一次函數的圖象交于點Q,設點P的橫坐標為n,直接寫出線段PQ的長為時n的值.20.(8分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.用樹狀圖或列表等方法列出所有可能出現的結果;求兩次摸到的球的顏色不同的概率.21.(10分)我省有關部門要求各中小學要把“陽光體育”寫入課表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數據,如圖1是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:該校對多少名學生進行了抽樣調查?本次抽樣調查中,最喜歡足球活動的有多少人?占被調查人數的百分比是多少?若該校九年級共有400名學生,圖2是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請你估計全校學生中最喜歡籃球活動的人數約為多少?22.(10分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.23.(12分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.24.(14分)如圖,以AD為直徑的⊙O交AB于C點,BD的延長線交⊙O于E點,連CE交AD于F點,若AC=BC.(1)求證:;(2)若,求tan∠CED的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題解析:∵am=2,an=3,
∴a3m+2n
=a3m?a2n
=(am)3?(an)2
=23×32
=8×9
=1.故選C.2、D【解析】分析:根據棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關鍵是根據棱錐的概念判斷.3、A【解析】試題分析:根據軸對稱圖形和中心對稱圖形的概念可知:選項A既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;選項B不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;選項C既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤;選項D既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤.故選A.考點:中心對稱圖形;軸對稱圖形.4、A【解析】
由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點睛】此題主要考查了圓錐側面展開扇形與底面圓之間的關系,圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關鍵是應用半圓的弧長=圓錐的底面周長.5、C【解析】
根據不等式的解集為x<即可判斷a,b的符號,則根據a,b的符號,即可解不等式bx-a<0【詳解】解不等式,移項得:∵解集為x<∴,且a<0∴b=-5a>0,解不等式,移項得:bx>a兩邊同時除以b得:x>,即x>-故選C【點睛】此題考查解一元一次不等式,掌握運算法則是解題關鍵6、C【解析】
兩圓內含時,無公切線;兩圓內切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關系.熟悉兩圓的不同位置關系中的外公切線和內公切線的條數.7、D【解析】
由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據線段的垂直平分線的性質可得結論,故B正確,不符合題意;
根據相似三角形的判定即可求解,故C正確,不符合題意;
由△BAE∽△ADC,得到CD與AD的大小關系,根據正切函數可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.【點睛】考查相似三角形的判定,矩形的性質,解直角三角形,掌握相似三角形的判定方法是解題的關鍵.8、A【解析】試題解析:根據主視圖和左視圖為矩形是柱體,根據俯視圖是圓可判斷出這個幾何體應該是圓柱,再根據左視圖的高度得出圓柱體的高為2;故選A.考點:由三視圖判斷幾何體.9、A【解析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點睛:本題考查全等三角形的判定和性質、勾股定理、等腰直角三角形的性質等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考選擇題中的壓軸題.10、A【解析】
(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學的作法都正確.故選A.【點睛】本題考查了復雜的作圖,重點是運用切線的判定來說明作法的正確性.二、填空題(共7小題,每小題3分,滿分21分)11、﹣2,﹣1【解析】試題分析:根據不等式的性質求出不等式的解集,找出不等式的整數解即可.解:1﹣2x<6,移項得:﹣2x<6﹣1,合并同類項得:﹣2x<5,不等式的兩邊都除以﹣2得:x>﹣,∴不等式的負整數解是﹣2,﹣1,故答案為:﹣2,﹣1.點評:本題主要考查對解一元一次不等式,一元一次不等式的整數解,不等式的性質等知識點的理解和掌握,能根據不等式的性質求出不等式的解集是解此題的關鍵.12、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點睛:本題考查的是因式分解,掌握提公因式法、平方差公式進行因式分解是解題的關鍵.13、B【解析】
根據平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【點睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關鍵是熟記定理.14、6【解析】設這個扇形的半徑為,根據題意可得:,解得:.故答案為.15、①②【解析】
根據折疊的性質可知,結合垂徑定理、三角形的性質、同圓或等圓中圓周角與圓心的性質等可以判斷①②是否正確,EO的最小值問題是個難點,這是一個動點問題,只要把握住E在什么軌跡上運動,便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.
由題知:沿著弦AB折疊,正好經過圓心O
∴OF=OA=OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所對圓周角相等)
∠D=∠AOB=60°(同弧所對的圓周角是圓心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等邊三角形(有兩個角是60°的三角形是等邊三角形)
故,①②正確
下面研究問題EO的最小值是否是1
如圖2,連接AE和EF
∵△ACD是等邊三角形,E是CD中點
∴AE⊥BD(三線合一)
又∵OF⊥AB
∴F是AB中點
即,EF是△ABE斜邊中線
∴AF=EF=BF
即,E點在以AB為直徑的圓上運動.
所以,如圖3,當E、O、F在同一直線時,OE長度最小
此時,AE=EF,AE⊥EF
∵⊙O的半徑是2,即OA=2,OF=1
∴AF=(勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正確
綜上所述:①②正確,③不正確.
故答案是:①②.【點睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了垂徑定理.16、1【解析】
先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集.【詳解】解:解①得:x≥﹣,解②得:x<1,∴不等式組的解集為﹣≤x<1,∴其非負整數解為0、1、2、3、4共1個,故答案為1.【點睛】本題考查了不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.17、?a6b3【解析】
根據積的乘方和冪的乘方法則計算即可.【詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.【點睛】本題考查了積的乘方和冪的乘方,關鍵是掌握運算法則.三、解答題(共7小題,滿分69分)18、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點A作AH⊥BC于點H,根據cosB=求得BH的長,從而根據已知可求得AH的長,BC的長,再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據,代入相關的量即可得;(3)分情況進行討論即可得.試題解析:(1)過點A作AH⊥BC于點H,則∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,過C作CE⊥AB交BA延長線于E,可得cos∠CAE=,①當∠ADP=90°時,cos∠APD=cos∠CAE=,即,解得x=;②當∠PAD=90°時,,解得x=,綜上所述,PB=或.【點睛】本題考查了相似三角形的判定與性質、底在同一直線上且高相等的三角形面積的關系等,結合圖形及已知選擇恰當的知識進行解答是關鍵.19、y=x﹣5【解析】分析:(1)根據定義,直接變形得到伴生一次函數的解析式;(2)求出頂點,代入伴生函數解析式即可求解;(3)根據題意得到伴生函數解析式,根據P點的坐標,坐標表示出縱坐標,然后通過PQ與x軸的平行關系,求得Q點的坐標,由PQ的長列方程求解即可.詳解:(1)∵二次函數y=(x﹣1)2﹣4,∴其伴生一次函數的表達式為y=(x﹣1)﹣4=x﹣5,故答案為y=x﹣5;(2)∵二次函數y=(x﹣1)2﹣4,∴頂點坐標為(1,﹣4),∵二次函數y=(x﹣1)2﹣4,∴其伴生一次函數的表達式為y=x﹣5,∴當x=1時,y=1﹣5=﹣4,∴(1,﹣4)在直線y=x﹣5上,即:二次函數y=(x﹣1)2﹣4的頂點在其伴生一次函數的圖象上;(3)∵二次函數y=m(x﹣1)2﹣4m,∴其伴生一次函數為y=m(x﹣1)﹣4m=mx﹣5m,∵P點的橫坐標為n,(n>2),∴P的縱坐標為m(n﹣1)2﹣4m,即:P(n,m(n﹣1)2﹣4m),∵PQ∥x軸,∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),∴PQ=(n﹣1)2+1﹣n,∵線段PQ的長為,∴(n﹣1)2+1﹣n=,∴n=.點睛:此題主要考查了新定義下的函數關系式,關鍵是理解新定義的特點構造伴生函數解析式.20、(1)詳見解析;(2).【解析】試題分析:(1)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)由(1)中樹狀圖可求得兩次摸到的球的顏色不同的情況有4種,再利用概率公式求解即可求得答案.試題解析:(1)如圖:,所有可能的結果為(白1,白2)、(白1,紅)、(白2,白1)、(白2,紅)、(紅,白1)、(紅,白2);(2)共有6種情況,兩次摸到的球的顏色不同的情況有4種,概率為.21、(1)該校對50名學生進行了抽樣調查;(2)最喜歡足球活動的人占被調查人數的20%;(3)全校學生中最喜歡籃球活動的人數約為720人.【解析】
(1)根據條形統計圖,求個部分數量的和即可;(2)根據部分除以總體求得百分比;(3)根據扇形統計圖中各部分占總體的百分比之和為1,求出百分比即可求解.【詳解】(1)4+8+10+18+10=50(名)答:該校對50名學生進行了抽樣調查.(2)最喜歡足球活動的有10人,,∴最喜歡足球活動的人占被調查人數的20%.(3)全校學生人數:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)則全校學生中最喜歡籃球活動的人數約為2000×=720(人).【點睛】此題主要考查了條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚的表示出每個項目的數據;扇形統計圖中各部分占總體的百分比之和為1,直接反應部分占全體的百分比的大小.22、(1)詳見解析;(2)菱形;(3)當∠A=45°,四邊形BECD是正方形.【解析】
(1)先求出四邊形ADEC是平行四邊形,根據平行四邊形的性質推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據菱形的判定推出即可;(3)求出∠CDB=90°,再根據正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四邊形,∵∠ACB=90°,D是AB中點,∴BD=CD,(斜邊中線等于斜邊一半)∴四邊形BECD是菱形;(3)若D為AB中點,則當∠A=45°時,四邊形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四邊形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,故答案為45°.【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 29479.1-2025移動實驗室第1部分:通則
- 2025-2026學年甘肅省平涼市靜寧縣數學三年級第一學期期末監測試題含解析
- 2025-2026學年福建省泉州市惠安縣數學三年級第一學期期末復習檢測模擬試題含解析
- 2024年溫泉縣三年級數學第一學期期末質量跟蹤監視試題含解析
- 護理學的創新思維與試題及答案
- 2025年執業藥師考試必考知識試題及答案
- 執業醫師考試學習策略監控與調整試題及答案
- 常用抗生素知識點回顧試題及答案
- 備考2025年中國文化概論行政管理考試的必修試題及答案
- 自考行政管理考核機制試題及答案
- 《中央空調系統培訓資料》課件
- 山東省城市園林綠化鄉土適生植物名錄2024
- 抖音簽約金牌主播合同范例
- 2025年云南省廣播電視局直屬事業單位招聘62人管理單位筆試遴選500模擬題附帶答案詳解
- 空氣動力學領域大模型研究思考與展望
- 【MOOC】美在民間-南京農業大學 中國大學慕課MOOC答案
- 透析器產業規劃專項研究報告
- 鼻咽癌放射治療技術
- 航空發動機部件快速修復技術
- GB/T 44713-2024節地生態安葬服務指南
- 避孕方法課件教學課件
評論
0/150
提交評論