江蘇省如東2023學年中考數學考試模擬沖刺卷含解析及點睛_第1頁
江蘇省如東2023學年中考數學考試模擬沖刺卷含解析及點睛_第2頁
江蘇省如東2023學年中考數學考試模擬沖刺卷含解析及點睛_第3頁
江蘇省如東2023學年中考數學考試模擬沖刺卷含解析及點睛_第4頁
江蘇省如東2023學年中考數學考試模擬沖刺卷含解析及點睛_第5頁
已閱讀5頁,還剩18頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時40海里的速度向正北方向航行,2小時后到達位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為A.40海里 B.60海里 C.70海里 D.80海里2.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm3.我國古代數學著作《九章算術》卷七“盈不足”中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不足四,問人數、物價各幾何?”意思是:幾個人合伙買一件物品,每人出8元,則余3元;若每人出7元,則少4元,問幾人合買?這件物品多少錢?若設有x人合買,這件物品y元,則根據題意列出的二元一次方程組為()A. B. C. D.4.數軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D5.已知常數k<0,b>0,則函數y=kx+b,的圖象大致是下圖中的()A. B.C. D.6.已知x1,x2是關于x的方程x2+ax-2b=0的兩個實數根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-17.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④8.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a9.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁10.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm2二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示,擺第一個“小屋子”要5枚棋子,擺第二個要11枚棋子,擺第三個要17枚棋子,則擺第30個“小屋子”要___枚棋子.12.已知反比例函數,在其圖象所在的每個象限內,的值隨的值增大而減小,那么它的圖象所在的象限是第__________象限.13.如圖,等腰△ABC中,AB=AC=5,BC=8,點F是邊BC上不與點B,C重合的一個動點,直線DE垂直平分BF,垂足為D.當△ACF是直角三角形時,BD的長為_____.14.如圖,在?ABCD中,E、F分別是AB、DC邊上的點,AF與DE相交于點P,BF與CE相交于點Q,若S△APD=16cm1,S△BQC=15cm1,則圖中陰影部分的面積為_____cm1.15.完全相同的3個小球上面分別標有數-2、-1、1,將其放入一個不透明的盒子中后搖勻,再從中隨機摸球兩次(第一次摸出球后放回搖勻),兩次摸到的球上數之和是負數的概率是________.16.安全問題大于天,為加大宣傳力度,提高學生的安全意識,樂陵某學校在進行防溺水安全教育活動中,將以下幾種在游泳時的注意事項寫在紙條上并折好,內容分別是:①互相關心;②互相提醒;③不要相互嬉水;④相互比潛水深度;⑤選擇水流湍急的水域;⑥選擇有人看護的游泳池.小穎從這6張紙條中隨機抽出一張,抽到內容描述正確的紙條的概率是_____.17.如圖,已知AB∥CD,=____________三、解答題(共7小題,滿分69分)18.(10分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關系,并說明理由.19.(5分)如圖是根據對某區初中三個年級學生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進行隨機抽樣調查,并繪制了下面不完整的條形統計圖和扇形統計圖(每人必選一種讀物,并且只能選一種),根據提供的信息,解答下列問題:(1)求該區抽樣調查人數;(2)補全條形統計圖,并求出最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角度數;(3)若該區有初中生14400人,估計該區有初中生最喜歡讀“名人傳記”的學生是多少人?20.(8分)如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)轉動轉盤一次,求轉出的數字是-2的概率;轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.21.(10分)如圖,在平面直角坐標系中,四邊形的頂點是坐標原點,點在第一象限,點在第四象限,點在軸的正半軸上,且.(1)求點和點的坐標;(2)點是線段上的一個動點(點不與點重合),以每秒個單位的速度由點向點運動,過點的直線與軸平行,直線交邊或邊于點,交邊或邊于點,設點.運動時間為,線段的長度為,已知時,直線恰好過點.①當時,求關于的函數關系式;②點出發時點也從點出發,以每秒個單位的速度向點運動,點停止時點也停止.設的面積為,求與的函數關系式;③直接寫出②中的最大值是.22.(10分)如圖,在中,AB=AC,,點D是BC的中點,DE⊥AB于點E,DF⊥AC于點F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點M,射線DM繞點D順時針旋轉,與AC邊交于點N.①根據條件補全圖形;②寫出DM與DN的數量關系并證明;③用等式表示線段BM、CN與BC之間的數量關系,(用含的銳角三角函數表示)并寫出解題思路.23.(12分)如圖,,,,求證:。24.(14分)如圖,在平面直角坐標系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點,OA=4,點D為拋物線的頂點,并且直線y=kx+b與該拋物線相交于A、B兩點,與y軸相交于點C,B點的橫坐標是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點,設P點的橫坐標是t,△PAB的面積是S,求S關于t的函數關系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當PB∥CD時,點Q是直線AB上一點,若∠BPQ+∠CBO=180°,求Q點坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:依題意,知MN=40海里/小時×2小時=80海里,∵根據方向角的意義和平行的性質,∠M=70°,∠N=40°,∴根據三角形內角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故選D.2、A【解析】

過點P作PD⊥OB于D,根據角平分線上的點到角的兩邊距離相等可得PC=PD,再根據垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質,垂線段最短的性質,熟記性質是解題的關鍵.3、D【解析】

根據題意可以找出題目中的等量關系,列出相應的方程組,從而可以解答本題.【詳解】由題意可得:,故選D.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.4、A【解析】

根據絕對值的含義和求法,判斷出絕對值等于2的數是﹣2和2,據此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關鍵要明確:①互為相反數的兩個數絕對值相等;②絕對值等于一個正數的數有兩個,絕對值等于0的數有一個,沒有絕對值等于負數的數.③有理數的絕對值都是非負數.5、D【解析】

當k<0,b>0時,直線經過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【詳解】解:∵當k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經過一、二、四象限,雙曲線在二、四象限.故選D.【點睛】本題考查了一次函數、反比例函數的圖象與性質.關鍵是明確系數與圖象的位置的聯系.6、A【解析】

根據根與系數的關系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關于x的方程x2+ax﹣2b=0的兩實數根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.7、B【解析】

由條件設AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數值可以求出∠EBC的度數和∠CEP的度數,則∠CEP=∠BEP,運用勾股定理及三角函數值就可以求出就可以求出BF、EF的值,從而可以求出結論.【詳解】解:設AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質的運用,相似三角形的判定及性質的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質的運用,解答時根據比例關系設出未知數表示出線段的長度是關鍵.8、B【解析】

先根據同底數冪的乘法法則進行運算即可?!驹斀狻緼.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【點睛】先根據同底數冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.9、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是?。蔬xD.10、A【解析】

根據已知得出圓錐的底面半徑及母線長,那么利用圓錐的側面積=底面周長×母線長÷2求出即可.【詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側面積=12×3π×3=4.5πcm2故選A.【點睛】此題主要考查了圓錐的有關計算,關鍵是利用圓錐的側面積=底面周長×母線長÷2得出.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】

根據題意分析可得:第1個圖案中棋子的個數5個,第2個圖案中棋子的個數5+6=11個,…,每個圖形都比前一個圖形多用6個,繼而可求出第30個“小屋子”需要的棋子數.【詳解】根據題意分析可得:第1個圖案中棋子的個數5個.第2個圖案中棋子的個數5+6=11個.….每個圖形都比前一個圖形多用6個.∴第30個圖案中棋子的個數為5+29×6=1個.故答案為1.【點睛】考核知識點:圖形的規律.分析出一般數量關系是關鍵.12、【解析】

直接利用反比例函數的增減性進而得出圖象的分布.【詳解】∵反比例函數y(k≠0),在其圖象所在的每個象限內,y的值隨x的值增大而減小,∴它的圖象所在的象限是第一、三象限.故答案為:一、三.【點睛】本題考查了反比例的性質,正確掌握反比例函數圖象的分布規律是解題的關鍵.13、2或【解析】

分兩種情況討論:(1)當時,,利用等腰三角形的三線合一性質和垂直平分線的性質可解;(2)當時,過點A作于點M,證明列比例式求出,從而得,再利用垂直平分線的性質得.【詳解】解:(1)當時,∵垂直平分,.(2)當時,過點A作于點,在與中,.故答案為或.【點睛】本題主要考查了等腰三角形的三線合一性質和線段垂直平分線的性質定理得應用.本題難度中等.14、41【解析】試題分析:如圖,連接EF∵△ADF與△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴陰影部分的面積為S△EPF+S△EFQ=16+15=41cm1.考點:1、三角形面積,1、平行四邊形15、【解析】

畫樹狀圖列出所有等可能結果,從中找到能兩次摸到的球上數之和是負數的結果,根據概率公式計算可得.【詳解】解:畫樹狀圖如下:由樹狀圖可知共有9種等可能結果,其中兩次摸到的球上數之和是負數的有6種結果,所以兩次摸到的球上數之和是負數的概率為,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.16、【解析】

根據事件的描述可得到描述正確的有①②③⑥,即可得到答案.【詳解】∵共有6張紙條,其中正確的有①互相關心;②互相提醒;③不要相互嬉水;⑥選擇有人看護的游泳池,共4張,∴抽到內容描述正確的紙條的概率是,故答案為:.【點睛】此題考查簡單事件的概率的計算,正確掌握事件的概率計算公式是解題的關鍵.17、85°.【解析】如圖,過F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°?∠ABF+∠C=180°?120°+25°=85°故答案為85°.三、解答題(共7小題,滿分69分)18、(1)見解析;(1)見解析.【解析】

(1)由全等三角形的判定定理AAS證得結論.(1)由(1)中全等三角形的對應邊相等推知點E是邊DF的中點,∠1=∠1;根據角平分線的性質、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點E是AB邊的中點,∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點E是DF的中點,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.19、(1)該區抽樣調查的人數是2400人;(2)見解析,最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角是度數21.6°;(3)估計最喜歡讀“名人傳記”的學生是4896人【解析】

(1)由“科普知識”人數及其百分比可得總人數;(2)總人數乘以“漫畫叢書”的人數求得其人數即可補全圖形,用360°乘以“其他”人數所占比例可得;(3)總人數乘以“名人傳記”的百分比可得.【詳解】(1)840÷35%=2400(人),∴該區抽樣調查的人數是2400人;(2)2400×25%=600(人),∴該區抽樣調查最喜歡“漫畫叢書”的人數是600人,補全圖形如下:×360°=21.6°,∴最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角是度數21.6°;(3)從樣本估計總體:14400×34%=4896(人),答:估計最喜歡讀“名人傳記”的學生是4896人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖能夠清楚地表示各部分所占的百分比.20、(1);(2).【解析】【分析】(1)根據題意可求得2個“-2”所占的扇形圓心角的度數,再利用概率公式進行計算即可得;(2)由題意可得轉出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據概率公式進行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉動轉盤一次,求轉出的數字是-2的概率為=;(2)由(1)可知,該轉盤轉出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結果共9種,其中數字之積為正數的的有5種,其概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.21、(1);(2)①;②當時,;當時,;當時,;③.【解析】

(1)根據等腰直角三角形的性質即可解決問題;(2)首先求出直線OA、AB、OC、BC的解析式.①求出R、Q的坐標,利用兩點間距離公式即可解決問題;②分三種情形分別求解即可解決問題;③利用②中的函數,利用配方法求出最值即可;【詳解】解:(1)由題意是等腰直角三角形,(2),線直的解析式為,直線的解析式時,直線恰好過點.,直線的解析式為,直線的解析式為①當時,,②當時,當時,當時,③當時,,時,的最大值為.當時,.時,的值最大,最大值為.當時,,時,的最大值為,綜上所述,最大值為故答案為.【點睛】本題考查四邊形綜合題、一次函數的應用、二次函數的應用、等腰直角三角形的性質等知識,解題的關鍵是學會構建一次函數或二次函數解決實際問題,屬于中考壓軸題.22、(1);(2)(2)①見解析;②DM=DN,理由見解析;③數量關系:【解析】

(1)先利用等腰三角形的性質和三角形內角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°﹣2α畫圖;②先利用等腰三角形的性質得到DA平分∠BAC,再根據角平分線性質得到DE=DF,根據四邊形內角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;③先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,利用等量代換得到BM+CN=2BE,然后根據正弦定義得到BE=BDsinα,從而有BM+CN=BC?sinα.【詳解】(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案為:α;(2)①如圖:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于點E,DF⊥AC于點F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;③數量關系:BM+CN=BC?sinα.證明思路為:先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接著在Rt△BDE可得BE=BDsinα,從而有BM+CN=BC?sinα.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等腰三角形的性質.23、見解析【解析】

據∠1=∠2可得∠BAC=∠EAD,再加上條件AB=AE,∠C=∠D可證明△ABC≌△AED.【詳解】證明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,∴△ABC≌△AED(AAS).【點睛】此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角24、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】

(1)根據題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據B的橫坐標可求B點坐標,把A,B坐標代入直線解析式,可求k,b(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論