2023學年內蒙古鄂爾多斯市東勝區中考二模數學試題含解析及點睛_第1頁
2023學年內蒙古鄂爾多斯市東勝區中考二模數學試題含解析及點睛_第2頁
2023學年內蒙古鄂爾多斯市東勝區中考二模數學試題含解析及點睛_第3頁
2023學年內蒙古鄂爾多斯市東勝區中考二模數學試題含解析及點睛_第4頁
2023學年內蒙古鄂爾多斯市東勝區中考二模數學試題含解析及點睛_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規律繼續下去,則S9的值為()A.()6 B.()7 C.()6 D.()72.如圖1,點F從菱形ABCD的頂點A出發,沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.23.若關于x的不等式組只有5個整數解,則a的取值范圍()A. B. C. D.4.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a C. D.5.在2014年5月崇左市教育局舉行的“經典詩朗誦”演講比賽中,有11名學生參加決賽,他們決賽的成績各不相同,其中的一名學生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學生成績的()A.眾數 B.中位數 C.平均數 D.方差6.將二次函數的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應的函數表達式是()A. B.C. D.7.若二次函數的圖像與軸有兩個交點,則實數的取值范圍是()A. B. C. D.8.下列計算正確的是()A. B. C. D.9.如圖,圓O是等邊三角形內切圓,則∠BOC的度數是()A.60° B.100° C.110° D.120°10.下列各式中,不是多項式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點A(m,2),B(5,n)在函數(k>0,x>0)的圖象上,將該函數圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應點分別為A′、B′.圖中陰影部分的面積為8,則k的值為.12.已知點A(2,4)與點B(b﹣1,2a)關于原點對稱,則ab=_____.13.如圖,某海監船以20km/h的速度在某海域執行巡航任務,當海監船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,此時海監船與島嶼P之間的距離(即PC的長)為_____km.14.當x________時,分式有意義.15.如圖,甲、乙兩船同時從港口出發,甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達點C,乙船正好到達甲船正西方向的點B,則乙船的航程為______海里(結果保留根號).16.計算:的結果為_____.三、解答題(共8題,共72分)17.(8分)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如圖統計圖:根據統計圖所提供的倍息,解答下列問題:(1)本次抽樣調查中的學生人數是多少人;(2)補全條形統計圖;(3)若該校共有2000名學生,請根據統計結果估計該校課余興趣愛好為“打球”的學生人數;(4)現有愛好舞蹈的兩名男生兩名女生想參加舞蹈社,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.18.(8分)已知a+b=3,ab=2,求代數式a3b+2a2b2+ab3的值.19.(8分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯結EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求20.(8分)淘寶網舉辦“雙十一”購物活動許多商家都會利用這個契機進行打折讓利的促銷活動.甲網店銷售的A商品的成本為30元/件,網上標價為80元/件.“雙十一”購物活動當天,甲網店連續兩次降價銷售A商品吸引顧客,問該店平均每次降價率為多少時,才能使A商品的售價為39.2元/件?據媒體爆料,有一些淘寶商家在“雙十一”購物活動當天先提高商品的網上標價后再推出促銷活動,存在欺詐行為.“雙十一”活動之前,乙網店銷售A商品的成本、網上標價與甲網店一致,一周可售出1000件A商品.在“雙十一”購物活動當天,乙網店先將A商品的網上標價提高a%,再推出五折促銷活動,吸引了大量顧客,乙網店在“雙十一”購物活動當天賣出的A商品數量相比原來一周增加了2a%,“雙十一”活動當天乙網店的利潤達到了3萬元,求乙網店在“雙十一”購物活動這天的網上標價.21.(8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當∠B=140°時,求∠BAE的度數.22.(10分)如圖,在中,AB=AC,,點D是BC的中點,DE⊥AB于點E,DF⊥AC于點F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點M,射線DM繞點D順時針旋轉,與AC邊交于點N.①根據條件補全圖形;②寫出DM與DN的數量關系并證明;③用等式表示線段BM、CN與BC之間的數量關系,(用含的銳角三角函數表示)并寫出解題思路.23.(12分)已知:如圖,在矩形ABCD中,點E,F分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.24.如圖,已知直線AB經過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標是.求這條直線的函數關系式及點B的坐標.在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在請說明理由.過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:如圖所示.∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.觀察發現規律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.當n=9時,S9=()9﹣2=()6,故選A.考點:勾股定理.2、C【解析】

通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【點睛】本題綜合考查了菱形性質和一次函數圖象性質,解答過程中要注意函數圖象變化與動點位置之間的關系.3、A【解析】

分別解兩個不等式得到得x<20和x>3-2a,由于不等式組只有5個整數解,則不等式組的解集為3-2a<x<20,且整數解為15、16、17、18、19,得到14≤3-2a<15,然后再解關于a的不等式組即可.【詳解】解①得x<20

解②得x>3-2a,

∵不等式組只有5個整數解,

∴不等式組的解集為3-2a<x<20,

∴14≤3-2a<15,故選:A【點睛】本題主要考查對不等式的性質,解一元一次不等式,一元一次不等式組的整數解等知識點的理解和掌握,能求出不等式14≤3-2a<15是解此題的關鍵.4、A【解析】

取CB的中點G,連接MG,根據等邊三角形的性質可得BH=BG,再求出∠HBN=∠MBG,根據旋轉的性質可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據全等三角形對應邊相等可得HN=MG,然后根據垂線段最短可得MG⊥CH時最短,再根據∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點睛】本題考查了旋轉的性質,等邊三角形的性質,全等三角形的判定與性質,垂線段最短的性質,作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.5、B【解析】

解:11人成績的中位數是第6名的成績.參賽選手要想知道自己是否能進入前6名,只需要了解自己的成績以及全部成績的中位數,比較即可.故選B.【點睛】本題考查統計量的選擇,掌握中位數的意義是本題的解題關鍵.6、B【解析】

拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),

可設新拋物線的解析式為:y=(x-h)1+k,

代入得:y=(x+1)1-1.

∴所得圖象的解析式為:y=(x+1)1-1;

故選:B.【點睛】本題考查二次函數圖象的平移規律;解決本題的關鍵是得到新拋物線的頂點坐標.7、D【解析】

由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.8、A【解析】

原式各項計算得到結果,即可做出判斷.【詳解】A、原式=,正確;

B、原式不能合并,錯誤;

C、原式=,錯誤;

D、原式=2,錯誤.

故選A.【點睛】此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.9、D【解析】

由三角形內切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應數值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點睛】此題主要考查了三角形的內切圓與內心以及切線的性質.關鍵是要知道關系式∠OBC+∠OCB=(∠ABC+∠ACB).10、D【解析】

原式分解因式,判斷即可.【詳解】原式=2(x2﹣2x+1)=2(x﹣1)2。故選:D.【點睛】考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解析】試題分析:∵將該函數圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應點分別為A′、B′,圖中陰影部分的面積為8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案為2.考點:2.反比例函數系數k的幾何意義;2.平移的性質;3.綜合題.12、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.13、40【解析】

首先證明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解決問題.【詳解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由題意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB?tan60°,∴PC=2×20×=40(km),故答案為40.【點睛】本題考查解直角三角形的應用﹣方向角問題,解題的關鍵是證明PB=BC,推出∠C=30°.14、x≠3【解析】由題意得x-3≠0,∴x≠3.15、10海里.【解析】

本題可以求出甲船行進的距離AC,根據三角函數就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達甲船正西方向的B點,∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.【點睛】本題主要考查的是解直角三角形的應用-方向角問題及三角函數的定義,理解方向角的定義是解決本題的關鍵.16、【解析】分析:根據二次根式的性質先化簡,再合并同類二次根式即可.詳解:原式=3-5=﹣2.點睛:此題主要考查了二次根式的加減,靈活利用二次根式的化簡是解題關鍵,比較簡單.三、解答題(共8題,共72分)17、(1)本次抽樣調查中的學生人數為100人;(2)補全條形統計圖見解析;(3)估計該校課余興趣愛好為“打球”的學生人數為800人;(4).【解析】

(1)用選“閱讀”的人數除以它所占的百分比即可得到調查的總人數;(2)先計算出選“舞蹈”的人數,再計算出選“打球”的人數,然后補全條形統計圖;(3)用2000乘以樣本中選“打球”的人數所占的百分比可估計該校課余興趣愛好為“打球”的學生人數;(4)畫樹狀圖展示所有12種等可能的結果數,再找出選到一男一女的結果數,然后根據概率公式求解.【詳解】(1)30÷30%=100,所以本次抽樣調查中的學生人數為100人;(2)選”舞蹈”的人數為100×10%=10(人),選“打球”的人數為100﹣30﹣10﹣20=40(人),補全條形統計圖為:(3)2000×=800,所以估計該校課余興趣愛好為“打球”的學生人數為800人;(4)畫樹狀圖為:共有12種等可能的結果數,其中選到一男一女的結果數為8,所以選到一男一女的概率=.【點睛】本題考查了條形統計圖與扇形統計圖,列表法與樹狀圖法求概率,讀懂統計圖,從中找到有用的信息是解題的關鍵.本題中還用到了知識點為:概率=所求情況數與總情況數之比.18、1【解析】

先提取公因式ab,再根據完全平方公式進行二次分解,然后代入數據進行計算即可得解.【詳解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,將a+b=3,ab=2代入得,ab(a+b)2=2×32=1.故代數式a3b+2a2b2+ab3的值是1.19、(1)證明見解析;(2)EH=【解析】

(1)由題意推出∠EHB=∠OCB,(2)結合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關鍵是熟練的掌握圓與相似三角形.20、(1)平均每次降價率為30%,才能使這件A商品的售價為39.2元;(2)乙網店在“雙十一”購物活動這天的網上標價為1元.【解析】

(1)設平均每次降價率為x,才能使這件A商品的售價為39.2元,根據原標價及經過兩次降價后的價格,即可得出關于x的一元二次方程,解之取其較小值即可得出結論;(2)根據總利潤=每件的利潤×銷售數量,即可得出關于a的一元二次方程,解之取其正值即可得出a的值,再將其代入80(1+a%)中即可求出結論.【詳解】(1)設平均每次降價率為x,才能使這件A商品的售價為39.2元,根據題意得:80(1﹣x)2=39.2,解得:x1=0.3=30%,x2=1.7(不合題意,舍去).答:平均每次降價率為30%,才能使這件A商品的售價為39.2元.(2)根據題意得:[0.5×80(1+a%)﹣30]×10(1+2a%)=30000,整理得:a2+75a﹣2500=0,解得:a1=25,a2=﹣1(不合題意,舍去),∴80(1+a%)=80×(1+25%)=1.答:乙網店在“雙十一”購物活動這天的網上標價為1元.【點睛】本題考查一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.21、(1)詳見解析;(2)80°.【分析】(1)根據∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據全等三角形對應角相等,運用五邊形內角和,即可得到∠BAE的度數.【解析】

(1)根據∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據全等三角形對應角相等,運用五邊形內角和,即可得到∠BAE的度數.【詳解】證明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)當∠B=140°時,∠E=140°,又∵∠BCD=∠EDC=90°,∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【點睛】考點:全等三角形的判定與性質.22、(1);(2)(2)①見解析;②DM=DN,理由見解析;③數量關系:【解析】

(1)先利用等腰三角形的性質和三角形內角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°﹣2α畫圖;②先利用等腰三角形的性質得到DA平分∠BAC,再根據角平分線性質得到DE=DF,根據四邊形內角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;③先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,利用等量代換得到BM+CN=2BE,然后根據正弦定義得到BE=BDsinα,從而有BM+CN=BC?sinα.【詳解】(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案為:α;(2)①如圖:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于點E,DF⊥AC于點F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;③數量關系:BM+CN=BC?sinα.證明思路為:先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接著在Rt△BDE可得BE=BDsinα,從而有BM+CN=BC?sinα.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等腰三角形的性質.23、證明見解析.【解析】試題分析:根據矩形的性質得出求出根據平行四邊形的判定得出四邊形是平行四邊形,即可得出答案.試題解析:∵四邊形ABCD是矩形,∴∴∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論