




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.52.如圖,已知點A(1,0),B(0,2),以AB為邊在第一象限內作正方形ABCD,直線CD與y軸交于點G,再以DG為邊在第一象限內作正方形DEFG,若反比例函數的圖像經過點E,則k的值是()(A)33(B)34(C)35(D)363.如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米4.若一組數據1、、2、3、4的平均數與中位數相同,則不可能是下列選項中的()A.0 B.2.5 C.3 D.55.現有三張背面完全相同的卡片,正面分別標有數字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數字之和為正數的概率是()A. B. C. D.6.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值27.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.圓錐 C.四棱柱 D.圓柱8.下列說法錯誤的是()A.必然事件的概率為1B.數據1、2、2、3的平均數是2C.數據5、2、﹣3、0的極差是8D.如果某種游戲活動的中獎率為40%,那么參加這種活動10次必有4次中獎9.甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分鐘輸入漢字個數的統計結果如下表:班級參加人數平均數中位數方差甲55135149191乙55135151110某同學分析上表后得出如下結論:①甲、乙兩班學生的平均成績相同;②乙班優秀的人數多于甲班優秀的人數(每分鐘輸入漢字≥150個為優秀);③甲班成績的波動比乙班大.上述結論中,正確的是()A.①② B.②③ C.①③ D.①②③10.已知二次函數y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=0二、填空題(共7小題,每小題3分,滿分21分)11.中國的《九章算術》是世界現代數學的兩大源泉之一,其中有一問題:“今有牛五,羊二,值金十兩.牛二,羊五,值金八兩。問牛羊各值金幾何?”譯文:今有牛5頭,羊2頭,共值金10兩,牛2頭,羊5頭,共值金8兩.問牛、羊每頭各值金多少?設牛、羊每頭各值金兩、兩,依題意,可列出方程為___________________.12.的相反數是______,的倒數是______.13.據國家旅游局數據中心綜合測算,2018年春節全國共接待游客3.86億人次,將“3.86億”用科學計數法表示,可記為____________.14.如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=43,則S陰影=_____.15.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是______.16.二次函數中的自變量與函數值的部分對應值如下表:…………則的解為________.17.化簡:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.三、解答題(共7小題,滿分69分)18.(10分)如圖,某數學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發,沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內,AB⊥BC,AB//DE.求旗桿AB的高度.(參考數據:sin37°≈,cos37°≈,tan37°≈.計算結果保留根號)19.(5分)某網店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網店甲、乙兩種羽毛球每筒的售價各是多少元?根據消費者需求,該網店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數量大于乙種羽毛球數量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.①若設購進甲種羽毛球m筒,則該網店有哪幾種進貨方案?②若所購進羽毛球均可全部售出,請求出網店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?20.(8分)如圖,?ABCD的對角線AC,BD相交于點O.E,F是AC上的兩點,并且AE=CF,連接DE,BF.(1)求證:△DOE≌△BOF;(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.21.(10分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個交點,求c的取值范圍;(2)若拋物線經過點(﹣1,0),求方程﹣2x2+4x+c=0的根.22.(10分)在大城市,很多上班族選擇“低碳出行”,電動車和共享單車成為他們的代步工具.某人去距離家8千米的單位上班,騎共享單車雖然比騎電動車多用20分鐘,但卻能強身健體,已知他騎電動車的速度是騎共享單車的1.5倍,求騎共享單車從家到單位上班花費的時間.23.(12分)先化簡,再求值:,其中x=﹣1.24.(14分)根據圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應放入大球、小球各多少個?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質,先證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方得到=是解決問題的關鍵.2、D【解析】試題分析:過點E作EM⊥OA,垂足為M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;故選D.考點:反比例函數綜合題.3、C【解析】
在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.4、C【解析】
解:這組數據1、a、2、1、4的平均數為:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)將這組數據從小到大的順序排列后為a,1,2,1,4,中位數是2,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=2,解得a=0,符合排列順序.(2)將這組數據從小到大的順序排列后為1,a,2,1,4,中位數是2,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=2,解得a=0,不符合排列順序.(1)將這組數據從小到大的順序排列后1,2,a,1,4,中位數是a,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=a,解得a=2.5,符合排列順序.(4)將這組數據從小到大的順序排列后為1,2,1,a,4,中位數是1,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=1,解得a=5,不符合排列順序.(5)將這組數據從小到大的順序排列為1,2,1,4,a,中位數是1,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=1,解得a=5;符合排列順序;綜上,可得:a=0、2.5或5,∴a不可能是1.故選C.【點睛】本題考查中位數;算術平均數.5、D【解析】
先找出全部兩張卡片正面數字之和情況的總數,再先找出全部兩張卡片正面數字之和為正數情況的總數,兩者的比值即為所求概率.【詳解】任取兩張卡片,數字之和一共有﹣3、2、1三種情況,其中和為正數的有2、1兩種情況,所以這兩張卡片正面數字之和為正數的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關鍵.6、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.7、A【解析】
側面為三個長方形,底邊為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個幾何體是三棱柱.
故選A.【點睛】本題考查的是三棱柱的展開圖,對三棱柱有充分的理解是解題的關鍵..8、D【解析】試題分析:A.概率值反映了事件發生的機會的大小,必然事件是一定發生的事件,所以概率為1,本項正確;B.數據1、2、2、3的平均數是1+2+2+34C.這些數據的極差為5﹣(﹣3)=8,故本項正確;D.某種游戲活動的中獎率為40%,屬于不確定事件,可能中獎,也可能不中獎,故本說法錯誤,故選D.考點:1.概率的意義;2.算術平均數;3.極差;4.隨機事件9、D【解析】分析:根據平均數、中位數、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學生的成績平均成績相同;根據中位數可以確定,乙班優秀的人數多于甲班優秀的人數;根據方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數、中位數、方差等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.10、D【解析】
拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據根與系數的關系把AB的長度用b、c表示,而S△APB=1,然后根據三角形的面積公式就可以建立關于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】【分析】牛、羊每頭各值金兩、兩,根據等量關系:“牛5頭,羊2頭,共值金10兩”,“牛2頭,羊5頭,共值金8兩”列方程組即可.【詳解】牛、羊每頭各值金兩、兩,由題意得:,故答案為:.【點睛】本題考查了二元一次方程組的應用,弄清題意,找出等量關系列出方程組是關鍵.12、2,【解析】試題分析:根據相反數和倒數的定義分別進行求解,﹣2的相反數是2,﹣2的倒數是.考點:倒數;相反數.13、3.86×108【解析】根據科學記數法的表示(a×10n,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是非負數;當原數的絕對值<1時,n是負數)形式可得:3.86億=386000000=3.86×108.故答案是:3.86×108.14、8π3【解析】
根據垂徑定理求得CE=ED=23,然后由圓周角定理知∠DOE=60°,然后通過解直角三角形求得線段OD、OE的長度,最后將相關線段的長度代入S陰影=S扇形ODB-S△DOE+S【詳解】如圖,假設線段CD、AB交于點E,∵AB是O的直徑,弦CD⊥AB,∴CE=ED=2又∵∠BCD=30∴∠DOE=2∠BCD=60∴OE=DE∴S陰影=S扇形ODB?S△DOE+S△BEC=60故答案為:8π3【點睛】考查圓周角定理,垂徑定理,扇形面積的計算,熟練掌握扇形的面積公式是解題的關鍵.15、【解析】
利用特殊三角形的三邊關系,求出AM,AE長,求比值.【詳解】解:如圖所示,設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據題意得:AD=BC=x,AE=DE=AB=x,如圖,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案為:.【點睛】特殊三角形:30°-60°-90°特殊三角形,三邊比例是1::2,利用特殊三角函數值或者勾股定理可快速求出邊的實際關系.16、或【解析】
由二次函數y=ax2+bx+c(a≠0)過點(-1,-2),(0,-2),可求得此拋物線的對稱軸,又由此拋物線過點(1,0),即可求得此拋物線與x軸的另一個交點.繼而求得答案.【詳解】解:∵二次函數y=ax2+bx+c(a≠0)過點(-1,-2),(0,-2),∴此拋物線的對稱軸為:直線x=-,∵此拋物線過點(1,0),∴此拋物線與x軸的另一個交點為:(-2,0),∴ax2+bx+c=0的解為:x=-2或1.故答案為x=-2或1.【點睛】此題考查了拋物線與x軸的交點問題.此題難度適中,注意掌握二次函數的對稱性是解此題的關鍵.17、(a+1)1.【解析】
原式提取公因式,計算即可得到結果.【詳解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.【點睛】考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關鍵.三、解答題(共7小題,滿分69分)18、3+3.5【解析】
延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點E作EG⊥AB于點G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,則AB=AG+BG=4?tan37°+3.5=3+3.5,故旗桿AB的高度為(3+3.5)米.考點:1、解直角三角形的應用﹣仰角俯角問題;2、解直角三角形的應用﹣坡度坡角問題19、(1)該網店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①進貨方案有3種,具體見解析;②當m=78時,所獲利潤最大,最大利潤為1390元.【解析】【分析】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,由條件可列方程組,則可求得答案;(2)①設購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,由條件可得到關于m的不等式組,則可求得m的取值范圍,且m為整數,則可求得m的值,即可求得進貨方案;②用m可表示出W,可得到關于m的一次函數,利用一次函數的性質可求得答案.【詳解】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據題意可得,解得,答:該網店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①若購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,根據題意可得,解得75<m≤78,∵m為整數,∴m的值為76、77、78,∴進貨方案有3種,分別為:方案一,購進甲種羽毛球76筒,乙種羽毛球為124筒,方案二,購進甲種羽毛球77筒,乙種羽毛球為123筒,方案一,購進甲種羽毛球78筒,乙種羽毛球為122筒;②根據題意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W隨m的增大而增大,且75<m≤78,∴當m=78時,W最大,W最大值為1390,答:當m=78時,所獲利潤最大,最大利潤為1390元.【點睛】本題考查了二元一次方程組的應用、一元一次不等式組的應用、一次函數的應用,弄清題意找準等量關系列出方程組、找準不等關系列出不等式組、找準各量之間的數量關系列出函數解析式是解題的關鍵.20、(2)證明見解析;(2)四邊形EBFD是矩形.理由見解析.【解析】分析:(1)根據SAS即可證明;(2)首先證明四邊形EBFD是平行四邊形,再根據對角線相等的平行四邊形是矩形即可證明;【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)結論:四邊形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四邊形EBFD是平行四邊形,∵BD=EF,∴四邊形EBFD是矩形.點睛:本題考查平行四邊形的性質
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 互聯網教育的智慧生態環境
- 荊州理工職業學院《二外法四》2023-2024學年第二學期期末試卷
- 廣西中醫藥大學賽恩斯新醫藥學院《暖通空調綜合課程設計》2023-2024學年第二學期期末試卷
- 武漢信息傳播職業技術學院《英語詩歌欣賞》2023-2024學年第二學期期末試卷
- 桂林航天工業學院《建筑設計原理》2023-2024學年第二學期期末試卷
- 遼寧經濟職業技術學院《小學數學研究》2023-2024學年第二學期期末試卷
- 白城師范學院《機電設備故障診斷與維修技術》2023-2024學年第二學期期末試卷
- 玉溪農業職業技術學院《證券投資顧問業務》2023-2024學年第二學期期末試卷
- 廣西建設職業技術學院《數字信號處理C》2023-2024學年第二學期期末試卷
- 石家莊經濟職業學院《機械工程綜合實驗》2023-2024學年第二學期期末試卷
- 關節鏡技術在骨科的應用
- 2023年版-腫瘤內科臨床路徑
- (完整版)水電工安全技術交底
- 《中國傳統文化心理學》課件第五章 傳統文化與心理治療(修)
- Q∕GDW 11445-2015 國家電網公司管理信息系統安全基線要求
- java考試管理系統源代碼開題報告外文翻譯英文文獻計001
- 蒸汽疏水閥性能監測斯派莎克工程中國有限公司-Armstrong
- 機械創新設計技術結課論文
- 人教版九年級歷史中考【政治經濟專題復習課件44張】(共44張)
- T∕CSEA 6-2018 鋅鎳合金電鍍技術條件
- 湘教版初中地理會考重點圖復習匯集
評論
0/150
提交評論