




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.2.如圖所示的四邊形,與選項中的一個四邊形相似,這個四邊形是()A. B. C. D.3.如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.70° B.110° C.130° D.140°4.下列由左邊到右邊的變形,屬于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)5.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學記數法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時6.計算:得()A.- B.- C.- D.7.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關系的圖象是()A. B. C. D.8.如圖,、是的切線,點在上運動,且不與,重合,是直徑.,當時,的度數是()A. B. C. D.9.某種計算器標價240元,若以8折優惠銷售,仍可獲利20%,那么這種計算器的進價為()A.152元 B.156元 C.160元 D.190元10.五個新籃球的質量(單位:克)分別是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正數表示超過標準質量的克數,負數表示不足標準質量的克數.僅從輕重的角度看,最接近標準的籃球的質量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,BC=7,,tanC=1,點P為AB邊上一動點(點P不與點B重合),以點P為圓心,PB為半徑畫圓,如果點C在圓外,那么PB的取值范圍______.12.如圖所示,在四邊形ABCD中,AD⊥AB,∠C=110°,它的一個外角∠ADE=60°,則∠B的大小是_____.13.關于x的不等式組的整數解共有3個,則a的取值范圍是_____.14.不等式組的所有整數解的積為__________.15.已知數據x1,x2,…,xn的平均數是,則一組新數據x1+8,x2+8,…,xn+8的平均數是____.16.關于x的分式方程=2的解為正實數,則實數a的取值范圍為_____.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.18.(8分)如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:圖中△APD與哪個三角形全等?并說明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關系?并說明理由.19.(8分)某校師生到距學校20千米的公路旁植樹,甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發,結果兩班師生同時到達,已知汽車的速度是自行車速度的2.5倍,求兩種車的速度各是多少?20.(8分)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DE⊥AC于E.(1)求證:DE為⊙O的切線;(2)G是ED上一點,連接BE交圓于F,連接AF并延長交ED于G.若GE=2,AF=3,求EF的長.21.(8分)某學校為弘揚中國傳統詩詞文化,在九年級隨機抽查了若干名學生進行測試,然后把測試結果分為4個等級;A、B、C、D,對應的成績分別是9分、8分、7分、6分,并將統計結果繪制成兩幅如圖所示的統計圖.請結合圖中的信息解答下列問題:(1)本次抽查測試的學生人數為,圖①中的a的值為;(2)求統計所抽查測試學生成績數據的平均數、眾數和中位數.22.(10分)某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:商品名稱甲乙進價(元/件)4090售價(元/件)60120設其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.寫出y關于x的函數關系式;該商場計劃最多投入8000元用于購買這兩種商品,①至少要購進多少件甲商品?②若銷售完這些商品,則商場可獲得的最大利潤是多少元?23.(12分)某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.該同學從5個項目中任選一個,恰好是田賽項目的概率為______;該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現的結果,并求恰好是一個田賽項目和一個徑賽項目的概率.24.先化簡,然后從中選出一個合適的整數作為的值代入求值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
畫出從正面看到的圖形即可得到它的主視圖.【詳解】這個幾何體的主視圖為:故選:A.【點睛】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進,通過仔細觀察和想象,再畫它的三視圖.2、D【解析】
根據勾股定理求出四邊形第四條邊的長度,進而求出四邊形四條邊之比,根據相似多邊形的性質判斷即可.【詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項中,四條邊之比為1:3:5:5,且對應角相等,故選D.【點睛】本題考查的是相似多邊形的判定和性質,掌握相似多邊形的對應邊的比相等是解題的關鍵.3、D【解析】∵四邊形ADA'E的內角和為(4-2)?180°=360°,而由折疊可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.4、C【解析】
因式分解是把一個多項式化為幾個整式的積的形式,據此進行解答即可.【詳解】解:A、B、D三個選項均不是把一個多項式化為幾個整式的積的形式,故都不是因式分解,只有C選項符合因式分解的定義,故選擇C.【點睛】本題考查了因式分解的定義,牢記定義是解題關鍵.5、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】1010×360×24=3.636×106立方米/時,故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、B【解析】
同級運算從左向右依次計算,計算過程中注意正負符號的變化.【詳解】-故選B.【點睛】本題考查的是有理數的混合運算,熟練掌握運算法則是解題的關鍵.7、C【解析】
首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關系變為先快后慢.【詳解】根據題意和圖形的形狀,可知水的最大深度h與時間t之間的關系分為兩段,先快后慢。故選:C.【點睛】此題考查函數的圖象,解題關鍵在于觀察圖形8、B【解析】
連接OB,由切線的性質可得,由鄰補角相等和四邊形的內角和可得,再由圓周角定理求得,然后由平行線的性質即可求得.【詳解】解,連結OB,∵、是的切線,∴,,則,∵四邊形APBO的內角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點睛】本題主要考查了切線的性質、圓周角定理、平行線的性質和四邊形的內角和,解題的關鍵是靈活運用有關定理和性質來分析解答.9、C【解析】【分析】設進價為x元,依題意得240×0.8-x=20x℅,解方程可得.【詳解】設進價為x元,依題意得240×0.8-x=20x℅解得x=160所以,進價為160元.故選C【點睛】本題考核知識點:列方程解應用題.解題關鍵點:找出相等關系.10、B【解析】
求它們的絕對值,比較大小,絕對值小的最接近標準的籃球的質量.【詳解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近標準的籃球的質量是-0.6,故選B.【點睛】本題考查了正數和負數,掌握正數和負數的定義以及意義是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:根據題意作出合適的輔助線,然后根據題意即可求得PB的取值范圍.詳解:作AD⊥BC于點D,作PE⊥BC于點E.∵在△ABC中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由題意可得,當PB=PC時,點C恰好在以點P為圓心,PB為半徑圓上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案為0<PB<.點睛:本題考查了點與圓的位置關系、解直角三角形,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.12、40°【解析】【分析】根據外角的概念求出∠ADC的度數,再根據垂直的定義、四邊形的內角和等于360°進行求解即可得.【詳解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案為40°.【點睛】本題考查了多邊形的內角和外角,掌握四邊形的內角和等于360°、外角的概念是解題的關鍵.13、【解析】
首先確定不等式組的解集,先利用含a的式子表示,根據整數解的個數就可以確定有哪些整數解,根據解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解:由不等式①得:x>a,由不等式②得:x<1,所以不等式組的解集是a<x<1.∵關于x的不等式組的整數解共有3個,∴3個整數解為0,﹣1,﹣2,∴a的取值范圍是﹣3≤a<﹣2.故答案為:﹣3≤a<﹣2.【點睛】本題考查了不等式組的解法及整數解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.14、1【解析】
解:,解不等式①得:,解不等式②得:,∴不等式組的整數解為﹣1,1,1…51,所以所有整數解的積為1,故答案為1.【點睛】本題考查一元一次不等式組的整數解,準確計算是關鍵,難度不大.15、【解析】
根據數據x1,x2,…,xn的平均數為=(x1+x2+…+xn),即可求出數據x1+1,x2+1,…,xn+1的平均數.【詳解】數據x1+1,x2+1,…,xn+1的平均數=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案為+1.【點睛】本題考查了平均數的概念,平均數是指在一組數據中所有數據之和再除以數據的個數.平均數是表示一組數據集中趨勢的量數,它是反映數據集中趨勢的一項指標.16、a<2且a≠1【解析】
將a看做已知數,表示出分式方程的解,根據解為非負數列出關于a的不等式,求出不等式的解集即可得到a的范圍.【詳解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解為正實數,∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案為:a<2且a≠1.【點睛】分式方程的解.三、解答題(共8題,共72分)17、(1)證明見解析;(2)【解析】試題分析:(1)由切線性質及等量代換推出∠4=∠5,再利用等角對等邊可得出結論;(2)由已知條件得出sin∠DEF和sin∠AOE的值,利用對應角的三角函數值相等推出結論.試題解析:(1)∵DC⊥OA,∴∠1+∠3=90°,∵BD為切線,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)作DF⊥AB于F,連接OE,∵DB=DE,∴EF=BE=3,在RT△DEF中,EF=3,DE=BD=5,EF=3,∴DF=∴sin∠DEF==,∵∠AOE=∠DEF,∴在RT△AOE中,sin∠AOE=,∵AE=6,∴AO=.【點睛】本題考查了圓的性質,切線定理,三角形相似,三角函數等知識,結合圖形正確地選擇相應的知識點與方法進行解題是關鍵.18、(1)△CPD.理由參見解析;(2)證明參見解析;(3)PC2=PE?PF.理由參見解析.【解析】
(1)根據菱形的性質,利用SAS來判定兩三角形全等;(2)根據第一問的全等三角形結論及已知,利用兩組角相等則兩三角形相似來判定即可;(3)根據相似三角形的對應邊成比例及全等三角形的對應邊相等即可得到結論.【詳解】解:(1)△APD≌△CPD.理由:∵四邊形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PE?PF.理由:∵△APE∽△FPA,∴即PA2=PE?PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE?PF.【點睛】本題考查1.相似三角形的判定與性質;2.全等三角形的判定;3.菱形的性質,綜合性較強.19、自行車速度為16千米/小時,汽車速度為40千米/小時.【解析】
設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,根據甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發,結果同時到達,即可列方程求解.【詳解】設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,由題意得,解得x=16,經檢驗x=16適合題意,2.5x=40,答:自行車速度為16千米/小時,汽車速度為40千米/小時.20、(1)見解析;(2)∠EAF的度數為30°【解析】
(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據切線的判定定理得到結論;(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAF的度數即可.【詳解】(1)證明:連接OD,如圖,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE為⊙O的切線;(2)解:∵AB為直徑,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴,即整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG∴∠EAG=30°,即∠EAF的度數為30°.【點睛】本題考查了切線的性質:經過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常常“遇到切點連圓心得半徑”.也考查了圓周角定理.21、(1)50、2;(2)平均數是7.11;眾數是1;中位數是1.【解析】
(1)根據A等級人數及其百分比可得總人數,用C等級人數除以總人數可得a的值;(2)根據平均數、眾數、中位數的定義計算可得.【詳解】(1)本次抽查測試的學生人數為14÷21%=50人,a%=×100%=2%,即a=2.故答案為50、2;(2)觀察條形統計圖,平均數為=7.11.∵在這組數據中,1出現了20次,出現的次數最多,∴這組數據的眾數是1.∵將這組數據從小到大的順序排列,其中處于中間的兩個數都是1,∴=1,∴這組數據的中位數是1.【點睛】本題考查了眾數、平均數和中位數的定義.用到的知識點:一組數據中出現次數最多的數據叫做這組數據的眾數.將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3941-2020建筑工程物證司法鑒定技術規程
- DB32/T 3830-2020未成年人救助保護機構服務規范
- DB32/T 3653-2019‘紫金紅3號’油桃生產技術規程
- DB32/T 3545.2-2020血液凈化治療技術管理第2部分:血液透析水處理系統質量控制規范
- DB32/T 3514.3-2019電子政務外網建設規范第3部分:IPv4域名規劃
- DB31/T 855-2014公共汽(電)車動態信息發布服務基本技術要求
- DB31/T 668.6-2012節能技術改造及合同能源管理項目節能量審核與計算方法第6部分:爐窯系統
- DB31/T 615-2012冷卻塔循環水系統富余能量回收利用的評價方法
- DB31/T 519-2010道路隧道空氣污染物凈化設備凈化效果的評價方法
- DB31/T 478.10-2011主要工業產品用水定額及其計算方法第10部分:食品行業(冷飲、餅干、固體食品飲料)
- 讀書分享(《給教師的建議》)課件
- 2024年山西建設投資集團有限公司招聘筆試參考題庫附帶答案詳解
- 股票的知識講座
- 工廠管理工作流程
- 服裝企業銷售經理的主要工作職責描述范本
- 人工智能在招聘中的應用
- 日結人員勞務合作協議 標準版
- (完整版)病例演講比賽PPT模板
- 初中生物知識雙向細目表
- 中國建行存單英文翻譯
- 事業單位工作人員調動審批表格
評論
0/150
提交評論