




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
arXivv[cs.LG]19Jan2023AarXivv[cs.LG]19Jan2023JacobBeck*jacob.beck@cs.ox.ac.ukUniversityofOxfordRistoVuorio*risto.vuorio@cs.ox.ac.ukUniversityofOxfordEvanZheranLiuZhengXiongLuisaZintgraf十evanliu@zheng.xiong@cs.ox.ac.ukzintgraf@StanfordUniversityUniversityofOxfordUniversityofOxfordChelseaFinncbfinnChelseaFinncbfinn@shimon.whiteson@cs.ox.ac.ukUniversityofOxfordAbstractWhiledeepreinforcementlearning(RL)hasfueledmultiplehigh-pro?lesuc-dbackfrommorewidespreadadoptionbynywe1IntroductioninforcementlearningmetaRLisafamilyofmachinelearningMLmethodsthatlearntoreinforcementlearn.Thatis,meta-RLusessample-inef?cientMLtolearnsample-ef?cientRLtedasamachinelearningproblemforasignicantperiodoftimeIntriguingly,32Background2.1Reinforcementlearningtoastheagent’senvironment.AnMDPisde?nedbyatupleM=〈s,A,P,P0,R,γ,T),wheresisthesetofstates,Athesetofactions,P(st+11st,at):sxAxs→R+theprobabilityoftransitioningfromstatesttostatest+1aftertakingactionat,P0(s0):s→R+isadistributionApolicyisafunctionπ(a1s):sxA→R+thatmapsstatestoactionprobabilities.Thisway,TPPsat1st)P(st+11st,at).t=0J(π)=Eτ~P(τ)┌t0γtrt┐,ltipleepisodesaregathered.IfHepisodeshavebeengathered,thenD={τh}=0isallofthedatadeneanRLalgorithmasthefunctionf(D):((sxAxR)T)H→Φ.Inpractice,thedatamayincludeath2.2Meta-RLde?nitionisinsteadtolearn(partsof)analgorithmfusingmachinelearning.WhereRLlearnsapolicy,fthehumanfromdirectlydesigningandimplementingtheRLalgorithmsmtomaximizeameta-RLobjective.Hence,fθoutputstheparametersofπφdirectly:φ=fθ(D).Werefertothepolicyπφasthebasepolicywithbaseparametersφ.Here,Disameta-trajectoryylerdinglywemaycalltheouterloopparametersandortheesupportedbyanysetoftasksHoweverorsandAtobesharedbetweenallofthetasksandthetaskstoonly41s-s-1s-d方p1d方1s-s-1s-d方p1d方p1s-s-1sssssdd方p-s-s-11ittedinsweetheτeDK∶H7(θ)=EMi~p(M)┌ED┌G(τ)f│θ,Mi┐┐,τeDK∶HwhereG(τ)isthediscountedreturnintheMDPMiandHisthelengthofthetrial,orthetask-erloopfθ(D).2.3ExamplealgorithmsMetaLearningMAMLwhichusesmetagradientsandFastRLviaSlowRL(RL2),whichusesrecurrentneuralnetworks[46,239].Manymeta-RLalgorithmsbuildonsimilartothoseusedinMAMLandRLwhichmakesthemexcellentMAMLManydesignsoftheinner-loopalgorithmfθbuildonexistingRLalgorithmsandusemeta-learningtoimprovethem.MAML[55]isanin?uentialdesignfollowingthispattern.ItsrsandithgradientdescenttobeagoodstartingpointforlearningontasksfromthetaskdistributionWhenadaptingtoanewtask,MAMLcollectsdatastepforataskMi~p(M):φ=f(D,φ0)=φ0+α5φОJ?(D,πφО),5ptuallyrightwhereJ?(D,πφО)isanestimateofthereturnsofthepolicyπφОforthetaskMiandαistheφ=φ0+β5φОJD1),Mi~p(M)whereπ1isthepolicyfortaskiupdatedoncebytheinner-loop,βisalearningrate,andientDepolicyforvariancereductionhighervaluesofKinitmeralwithKuptodifferencesinthediscountingTooptimizemtheRNNHoweverMAMLcannottrivially6Multi-taskMulti-task-RL2[46,239],MAML[55]-LPGLPGMetaGenRL9]2.4ProblemCategoriesWhilethegivenproblemsettingappliestoallofmetaRLdistinctclustersintheliteraturehaveultitasksettingInthissettinganagentmustquicklyrringtrainingMethodsforthismanyshotsingletasksettingtendto7Meta-LearningFew-ShotMeta-RLMeta-LearningAdaptationGoal MDP1 MDP2 MDP3Rl2,L2RL,VariBADMeta-Learning MDP1 MDP2 MDP3 MAML,DREAMZero-ShotPerformwellfromstartMethods:Few-ShotFreeexplorationphaseMethods:Learnnewtaskswithinafewsteps/episodesOverMultiple(similar)tasks......Meta-LearningMany-ShotMetaMeta-LearningGoalLearnnewtasksbetterthanstandardRLalgorithmsLPG,MetaGenRLMeta-LearningOverMultiple(diverse)tasks MDP1 MDP2 MDP3SolutionsMethods:AdaptationGoalAcceleratestandardRLalgorithmsMeta-LearningOverwindowsinasingletask.(Noreset)SolutionsMethods:STACX,FRODOMeta-LearningAdaptationAdaptationAdaptationMDPMDP18ParameterizedpolicygradientsMAML-likeFinnetal.[55],Lietal.[124],Sungetal.[219],Vuorioetal.[235],ZintgrafMAML-likeDistributionalMAMLndMeta-gradientestimationFoersteretal.[60],Al-Shedivatetal.[207],Stadieetal.[216],Liuetal.[133],Maoetal.[139],Fallahetal.[52],Tang[222],andVuorioetal.[234]BlackboxnerloopHeessetal.[88],Duanetal.[46],Wangetal.[239],Humpliketal.[95],Fakooretal.[51],Yanetal.[256],Zintgrafetal.[281],Liuetal.[130],andZintgrafetal282]AttentionMishraetal.[150],Fortunatoetal.[62],Emukpereetal.[49],Ritteretal.[190],Wangetal.[240],andMelo[141]HypernetworksXianetal.[250]andBecketal.[17]TaskInferenceMulti-taskpre-trainingHumpliketal.[95],Kamiennyetal.[104],Raileanuetal.[182],Liuetal.[130],andPengetal.[174]LatentforZhouetal.[278],Raileanuetal.[182],Zintgrafetal.[281],Zhangetal.[268],Zintgrafetal.[282],Becketal.[17],Heetal.[86],andImagawaetal.97]ConstrastivelearningFuetal.[64]rnerwouldacgthis3Few-ShotMeta-RLkinhomekitchensTraininganewereitntocookinitHowevertrainingsuchanagentwithmetaRLinvolvesuniquefew-shotsetting.Recallthatmeta-RLitselflearnsalearningalgorithmfθ.Thisplacesunique?Parameterizedpolicygradientmethodsbuildthestructureofexistingpolicygradiente9PPGMethodBlackBoxMethodGeneralizationeralizationalizationAMLalizationAMLLrereInductivebiasinstructureInductiveInductivebiasinstructureInductivebiasfromdatachallengesOnesuchrningsnsupervision.Inthestandardmeta-RLproblemsetting,rewardsareavailableduringbothmeta-ample,itmaybedif?culttomanuallydesignaninformativetaskdistributionformeta-training,metanges3.1ParameterizedPolicyGradientMethodsMeta-RLlearnsalearningalgorithmfθ,theinner-loop.WecalltheparameterizationoffθthesectionwediscussonewayofparameterizingtheinnerloopthatbuildsinthestructureofexistingstandardRLalgorithms.Parameterizedpolicygradients(PPG)φj+1=fθ(Dj,φj)=φj+αθ5φjJ?θ(Dj,πφj),teverφj+1=φj+αθMθ5φjJ?θ(Dj,πφj)[255,170,58].Whileavaluebased-methodcouldbeusedcanbeupdatedwithback-propagationinaPPGmethodorbyaneuralnetworkinablackboxodslearnafulldistributionoverinitialpolicyparameters,p(φ0)[82,260,242,285,73].Thisterstion?tviavariationalinference[82,73].Moreover,thedistributionitselfcanbeupdatedintheyweightsandbiasesofthelastlayerofthepolicy[181],whileleavingtherestoftheparametersectorditionedInthiscasetheinputtothepolicyitselfparameterizesaMeta-gradientestimationinouter-loopoptimizationEstimatinggradientsfortheouter-loopisnnerloopThereforeoptimizingtheouter-looprequirestakingthegradientofagradient,orameta-gradient,whichinvolvesofdatausedbyinnerlooponpriortedbydataintheouterloopStillthesepriorpoliciesdoaffectthedistributionofdatasampledinD,usedlaterbytheinner-looplearningalgorithm.Thusignoringthegradienttermsinthepolicyentpwithanmethodmayusearstorderapproximation63],orusegradient-freeoptimizationtoopti-Outer-loopalgorithmsWhilemostPPGmethodsuseapolicy-gradientalgorithmintheouter-saDAdditionally,onecantraintask-speci?cexpertsandthenusetheseforimitationlearninginthetorybehaviorbyoptimizingEquationtheycaneoverPPG3.2BlackBoxMethodsauniversalfunctionapproximator.ThisplacesfewerconstraintsonthefunctionfθthanwithaedbystructureByconditioningapolicyonacontextvector,alloftheweightsandbiasesofTmustgeneralizebetweenalltasksHoweverwhensignicantlydistinctpoliciesarerequiredfordifferenttasks,cydirectlyTheinnerloopmayproducealloftheparametersofafeedInner-looprepresentationWhilemanyblackboxmethodsuserecurrentneuralnetworks,[88,opionmechaexOuter-loopalgorithmsWhilemanyblackboxmethodsuseon-policyalgorithmsintheouter-loop[46,239,281],itisstraightforwardtouseoff-policyalgorithms[185,51,130],whichbringBlackboxtrade-offsOnekeybene?tofblackboxmethodsisthattheycanrapidlyaltertheirnoftenstruggletogeneralizeoutsideofpM,252].Considertherobotchef:whileitkboxingafullyblack-boxmethod,thepolicyorinner-loopcanbe?ne-tunedwithpolicygradientsat3.3TaskInferenceMethodsritrainingforeachtask,withnoplanningrequired.Infact,trainingapolicyoveradistributionoftasks,withaccesstothetruetask,canbetakenasthede?nitionofmulti-taskRL[263].InthedsmapthetaskdirectlytoweightspolicyheasTaskinferencewithprivilegedinformationAstraightforwardmethodforinferringthetaskistokcMionoftionwnTaskinferencewithmulti-tasktrainingSomeresearchusesthemulti-tasksettingtoimproventedtourinonthatencodesthetaskreprensitcontainsonlythisinformation[95,130].Afterthis,gθ(cM)canbeinferredinmeta-learningtaskRLmaybeisneededforthemeta-RLpolicytoidentifythetask.InthiscaseinsteadofonlyinferringthefcientlymanyexploratorythetasksharingpoliciesbecomeslessfeasibleOftenintrinsicrewardsareTaskinferencewithoutprivilegedinformationOthertaskinferencemethodsdonotrelyonForinstanceataskcanbeonortransitionfunction[278,281,268,280,86];andtaskinferencecanusecontrastivelearningHepisodesxAxAxAxAxAxAxAxAxxAKepisodestrationoffreeexplorationinrstKepisodesyellowfollowedbynotfreeexploedbyexploitationwhitedistributionusingavariationalinformationbottleneckesldtoreheotherhandtrainingthehattion3.4ExplorationandMeta-ExplorationshouldworkforanyMDPandmayconsistofrandomon-policyexploration,epsilon-greedyex-istypeofexplorationstilloccursintheadditionallyexistsexplorationintheZhouetal.[278],Gurumurthyetal.[83],Fuetal.[64],Liuetal.[130],andZhangetal.[268]pMToenablesampleefcientadaptationduseddistribution.Recallthatinthefew-shotadaptationsetting,oneachtrial,theagentisplacedintoanewtaskonsolvingthetaskinthenextfewepisodes(i.e.,overtheH_KepisodesinEquation3).Anduringtentiallyevenbeyondtheinitialfewshotswithexploitingwhatitalreadyknowstoachievehighrewards.Itisalwaysoptimaltoexploreinthe?rstKepisodes,sincenoicingshorttermrewardstolearnabetterpolicyforhigherlaterreturnspaysdividends,whilewhenH_Kissmall,theagentmustexploitmoretoobtainanyrewarditcan,optimallyEnd-to-endoptimization.Perhapsthesimplestapproachistolearntoexploreandexploitend-to-endbydirectlymaximizingthemeta-RLobjective(Equation3)asdonebyblackboxmeta-RLapproaches[46,239,150,216,26].Approachesinthiscategoryimplicitlylearntoexplore,astheydirectlyoptimizethemeta-RLobjectivewhosemaximizationrequiresexploration.Morespeci?cally,thereturnsinthelaterK_HepisodesτeDG(τ)canonlybemaximizedifthepolicyappropriatelyexploresinthe?rstKepisodes,somaximizingthemeta-RLobjectivecanyieldoptimalexplorationinprinciple.Thisapproachworkswellwhencomplicatedexplorationstrategiesarenotneeded.Forexample,ifattemptingseveraltasksinthedistributionoftasksisareasonableformofexplorationforaparticulartaskdistribution,thenend-to-endoptimizationmayworkwell.ingredients(i.e.,explore)ifdoingsoresultsinacookedmeal.Hence,itischallengingtolearnLriorsamplingTocircumventthechallengeofimplicitlylearningtoexploreRakellyetalwhattheidentityofthetaskis,andthentoiterativelyre?nethisdistributionbyinteractingwithviahatsalongtsinitialpositionrenttaddningthedynamicsandrewardfunctioninformationgainoverthetaskdistribution[64,130],orareductioninuncertaintyoftheposte-?rstKepisodes,andthentheexploitationpolicyexploitsfortheremainingH_Kexploitationinformationaboutthetaskdynamics,butareirrelevantforarobotcheftryingtocookameal.cyusedhespaceofxxOptimal0-shotPosteriorSamplingIrrelevantExplorationAxxAxx AEpisode1xxAxxAxxAEpisode2xxAxxAxxAEpisode30imalexplorationandposteriorsamplingThethirdrowconsideringthatthisintrinsicrewardcanbeusedtotrainapolicyexclusivelyforoff-policydatasnotForexample,usingrandomnetworkdistillation[29],arewardmayaddanincentivefornovelty[282],oraddanincentiveforgettingdatawhereTD-errorishigh[77].Manyoftheserewards3.5Bayes-AdaptiveOptimalityrtaintyInsteadoptimalexplorationonlyreducesuncertaintygsmeforexplorationislimitedThereforesiscussximateBayesoptimalpoliciesandanalyzethebehaviorofBayes-adaptiveMarkovdecisionprocesses.Todeterminetheoptimalexplorationstrategy,weicsandrewardfunctionFromahighleveltheBayesadaptiveMarkovdeciBAMDPmaximizesreturnswhenplacedintoanunknownMDP.Crucially,thedynamicsofthearacterizesthecurrentuncertaintyasadistributionoverpotentialtionstsarst)sofar,andtheinitialbeliefb0isapriorp(r,p).Then,thestatesofntySpecicallytheBAMDPrewardR+(st,bt,at)=ER~bt[R(st,at)].(4)heBAMDP:P+(st+1,bt+11st,bt,at)=ER,P~bt[P(st+11st,at)δ(bt+1=p(R,P1τ:t+1)].(5)hecurrentbeliefr=R+(st,bt,at)=ER~bt[R(st,at)].EbRstbtatLearninganapproximateBayes-optimalpolicyDirectlycomputingBayes-optimalpoliciesre-onandthelatentvariablesmcanbelearnedbyrollingoutthepolicytoobtainonarnBayesadaptiveoptimalpoliciestheframeworkofBAMDPscanstillofferahelpfulFirst,blackboxmeta-RLalgorithmssuchasRL2learnarecurrentpolicythatnotonlycondi-tionsonthecurrentstatest,butonthehistoryofobservedstates,actions,andrewardsτ:t=memputingthebeliefstateetaRLalgorithmscaninprinciplelearnBayesadaptiveatetosmetaRLalgorithmsstruggletolearnischallengingLiuetalhighlightonesuchoptimizationchallengeforblackboxmeta-RLwheretheagentisgivenafew“free”episodestoexplore,andtheobjectiveistomaximizethernsbeginningfromthersttimestepThesetheresultinusinglesssuitableutensilsoringredients,though,especiallywhenoptimizedatlowerlveinterhecurrenttaskwhichisequivalenttothebeliefstateThenexplocycanbesuf?cientforoptimallysolvingthemeta-RLproblem,evenifitdoesnotmakeuseofallthisstate3.6SupervisionInthissection,wediscussmostofthedifferenttypesofsupervisionconsideredinmeta-RL.Inexperttrajectoriesorotherprivilegedinformationduringmeta-trainingand/ortesting).EachofMeta-RLMeta-RLwithMeta-RLviaImitationHYPER
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公場景下AI助力快速解讀醫(yī)療數(shù)據(jù)
- 醫(yī)療數(shù)據(jù)庫與資源利用指南
- 醫(yī)療大數(shù)據(jù)的采集與處理揭秘健康之秘
- 醫(yī)療廢棄物處理與生態(tài)保護的關系研究
- Axure RP 互聯(lián)網產品原型設計課件 第9章 使用中繼器
- 醫(yī)療設備質量管理的關鍵環(huán)節(jié)
- 集體備課中心發(fā)言稿模版
- 醫(yī)療信息化趨勢下的電子病歷系統(tǒng)革新
- 中小學做義工思想總結,個人總結模版
- 醫(yī)療大數(shù)據(jù)挖掘在醫(yī)療決策支持系統(tǒng)中的實踐
- 中國精神課件
- 2025年福建福州市電子信息集團有限公司招聘筆試參考題庫附帶答案詳解
- 天津市和平區(qū)二十中學2025屆學業(yè)水平考試化學試題模擬卷(九)含解析
- 2025屆河北省“五個一”名校聯(lián)盟高三下學期4月聯(lián)考地理試題(含答案)
- 揚州大學《水工程施工》2023-2024學年第二學期期末試卷
- 籃球智慧樹知到期末考試答案章節(jié)答案2024年浙江大學
- GB/T 17937-2024電工用鋁包鋼線
- 多圖中華民族共同體概論課件第十一講 中華一家與中華民族格局底定(清前中期)根據(jù)高等教育出版社教材制作
- 2013年高考安徽理科數(shù)學試題及答案(word解析版)
- 基于MATLAB的曲柄滑塊機構運動的仿真
- 公司組織架構圖模板可編輯
評論
0/150
提交評論