




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是虛數單位,若,,則實數()A.或 B.-1或1 C.1 D.2.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.3.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.4.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院校科研方陣.他們是由軍事科學院、國防大學、國防科技大學聯合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生5.已知函數,若函數的所有零點依次記為,且,則()A. B. C. D.6.已知是等差數列的前項和,,,則()A.85 B. C.35 D.7.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.8.數列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.49.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現從中摸出3個球(除顏色與編號外球沒有區別),則恰好不同時包含字母,,的概率為()A. B. C. D.10.已知集合,,則=()A. B. C. D.11.設,則A. B. C. D.12.已知函數,則函數的零點所在區間為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點到準線的距離為.14.已知等差數列的前n項和為Sn,若,則____.15.點P是△ABC所在平面內一點且在△ABC內任取一點,則此點取自△PBC內的概率是____16.設變量,,滿足約束條件,則目標函數的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數列{an}(2)設cn=bnan,求數列18.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.19.(12分)在平面直角坐標系xOy中,曲線的參數方程為(為參數).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設和交點的交點為,求的面積.20.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.21.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對應的變換作用下得到另一曲線,求曲線的方程.22.(10分)已知函數.(1)當時,解不等式;(2)當時,不等式恒成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數的運算,屬于基礎題2、A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.3、B【解析】
根據題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題4、C【解析】
根據①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.5、C【解析】
令,求出在的對稱軸,由三角函數的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數周期,令,可得.則函數在上有8條對稱軸.根據正弦函數的性質可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數的對稱性,考查了三角函數的周期性,考查了等差數列求和.本題的難點是將所求的式子拆分為的形式.6、B【解析】
將已知條件轉化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數列通項公式的基本量計算,考查等差數列前項和的計算,屬于基礎題.7、B【解析】
由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.8、D【解析】
用去換中的n,得,相加即可找到數列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數列是以6為周期的周期數列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.9、B【解析】
首先求出基本事件總數,則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點睛】本題考查了古典概型及其概率計算公式,考查了排列組合的知識,解答的關鍵在于正確理解題意,屬于基礎題.10、C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.11、C【解析】分析:利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡復數,然后求解復數的模.詳解:,則,故選c.點睛:復數是高考中的必考知識,主要考查復數的概念及復數的運算.要注意對實部、虛部的理解,掌握純虛數、共軛復數這些重要概念,復數的運算主要考查除法運算,通過分母實數化轉化為復數的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.12、A【解析】
首先求得時,的取值范圍.然后求得時,的單調性和零點,令,根據“時,的取值范圍”得到,利用零點存在性定理,求得函數的零點所在區間.【詳解】當時,.當時,為增函數,且,則是唯一零點.由于“當時,.”,所以令,得,因為,,所以函數的零點所在區間為.故選:A【點睛】本小題主要考查分段函數的性質,考查符合函數零點,考查零點存在性定理,考查函數的單調性,考查化歸與轉化的數學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由題意得,因為拋物線,即,即焦點到準線的距離為.考點:拋物線的性質.14、【解析】
由,,成等差數列,代入可得的值.【詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數列前n項和的性質,相對不難.15、【解析】
設是中點,根據已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結合幾何概型求得點取自三角形的概率.【詳解】設是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內的概率是.故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎題.16、7【解析】作出不等式組表示的平面區域,得到如圖的△ABC及其內部,其中A(2,1),B(1,2),C(4,5)設z=F(x,y)=2x+3y,將直線l:z=2x+3y進行平移,當l經過點A時,目標函數z達到最小值∴z最小值=F(2,1)=7三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)an=(2)Tn【解析】
(1)利用an與Sn的遞推關系可以an的通項公式;P點代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數列{bn(2)因為cn=b則13兩式相減得:23所以Tn【點睛】用遞推關系an=Sn-18、(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和積轉化可求,利用基本不等式可將轉化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當時取等號.故,且當時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.19、(1);(2)【解析】
(1)先將曲線的參數方程化為普通方程,再將普通方程化為極坐標方程即可.(2)將和的極坐標方程聯立,求得兩個曲線交點的極坐標,即可由極坐標的含義求得的面積.【詳解】(1)曲線的參數方程為(α為參數),消去參數的的直角坐標方程為.所以的極坐標方程為(2)解方程組,得到.所以,則或().當()時,,當()時,.所以和的交點極坐標為:,.所以.故的面積為.【點睛】本題考查了參數方程與普通方程的轉化,直角坐標方程與極坐標的轉化,利用極坐標求三角形面積,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標系,求出平面的法向量與,坐標代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因為平面,所以平面平面.易知,且為的中點,所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設的中點為,以為原點,以,,所在直線分別為,,軸,建立空間直角坐標系,則,,,,,所以,,.設平面的法向量為,由得取.設直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運算求解能力和推理論證能力,屬于基礎題.21、【解析】
根據,可解得,設為曲線任一點,在矩陣對應的變換作用下得到點,則點在曲線上,根據變換的定義寫出相應的矩陣等式,再用表示出,代入曲線的方程中,即得.【詳解】,,即.,解得,.設為曲線任一點,則,又設在矩陣A變換作用得到點,則,即,所以即代入,得,所以曲線的方程為.【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CHC 115.1-2021 T/CAS 115.1-2021保健紡織品第1部分:通用要求
- T/CGCC 17-2018商業信譽評價體系
- T/CECS 10181-2022消防排煙通風天窗
- T/CCSAS 026-2023化工企業操作規程管理規范
- T/CCS 027-2023煤礦地理信息系統地圖服務接口要求
- T/CCOA 14-2020組織蛋白
- T/CCMA 0166-2023施工升降機標識
- T/CCASC 6007-2023水合肼、ADC發泡劑行業清潔生產評價指標體系
- T/CCAAS 001-2023“黨建+企業文化管理”評價標準
- T/CATCM 026-2023中藥液體廢棄物循環利用指導原則
- 《房顫教學查房》課件
- 臨床試驗流程培訓
- 《常德津市牛肉粉》課件
- 清理脫硫塔施工方案
- 2025年軍隊文職考試《公共科目》試題與參考答案
- 智聯招聘國企行測
- 氫氣系統安全工作規程(3篇)
- 五卅運動課件
- 術中獲得性壓力性損傷預防專家共識2023
- 2024年應屆畢業生培訓課件:職場啟航更上一層樓
- 2023年高考真題-物理(福建卷) 含答案
評論
0/150
提交評論