研究生數值分析第6章 微分方程數值解法_第1頁
研究生數值分析第6章 微分方程數值解法_第2頁
研究生數值分析第6章 微分方程數值解法_第3頁
研究生數值分析第6章 微分方程數值解法_第4頁
研究生數值分析第6章 微分方程數值解法_第5頁
已閱讀5頁,還剩44頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第6章常微分方程數值解法§6.1引言§6.2歐拉方法§6.3龍格—庫塔方法整理ppt§6.1引言微分方程數值解一般可分為:常微分方程數值解和偏微分方程數值解。自然界與工程技術中的許多現象,其數學表達式可歸結為常微分方程(組)的定解問題。一些偏微分方程問題也可以轉化為常微分方程問題來(近似)求解。Newton最早采用數學方法研究二體問題,其中需要求解的運動方程就是常微分方程。許多著名的數學家,如Bernoulli(家族),Euler、Gauss、Lagrange和Laplace等,都遵循歷史傳統,研究重要的力學問題的數學模型,在這些問題中,許多是常微分方程的求解。作為科學史上的一段佳話,海王星的發現就是通過對常微分方程的近似計算得到的。本章主要介紹常微分方程數值解的若干方法。整理ppt1、常微分方程與解為n階常微分方程。如果函數在區間[a,b]內n階可導,稱方程滿足方程的函數稱為微分方程的解。則如為任意常數)一般稱為方程的通解。為方程的解。如果則有為方程滿足定解條件的解。一、初值問題的數值解法整理ppt方程的通解滿足定解條件的解微分關系(方程)解的圖示整理ppt本教材重點討論定解問題(初值問題)定解條件(初始條件)是否能夠找到定解問題的解取決于僅有極少數的方程可以通過“常數變易法”、“可分離變量法”等特殊方法求得初等函數形式的解,絕大部分方程至今無法理論求解。如等等整理ppt2、數值解的思想(1)將連續變量離散為(2)用代數的方法求出解函數在點的近似值*數學界關注工程師關注如果找不到解函數數學界還關注:解的存在性解的唯一性解的光滑性解的振動性解的周期性解的穩定性解的混沌性……整理ppt求函數y(x)在一系列節點

a=x0<x1<…<xn=b處的近似值的方法稱為微分方程的數值解法。稱節點間距為步長,通常采用等距節點,即取hi=h

(常數)。稱為微分方程的數值解。所謂數值解法:整理ppt稱在區域D上對滿足Lipschitz條件是指:記3、相關定義整理ppt(2)一般構造方法:

離散點函數值集合+線性組合結構→近似公式4、迭代格式的構造(1)構造思想:將連續的微分方程及初值條件離散為線性方程組加以求解。由于離散化的出發點不同,產生出各種不同的數值方法。基本方法有:有限差分法(數值微分)、有限體積法(數值積分)、有限元法(函數插值)等等。

整理ppt(3)如何保證迭代公式的穩定性與收斂性?5、微分方程的數值解法需要解決的主要問題(1)如何將微分方程離散化,并建立求其數值解的迭代公式?(2)如何估計迭代公式的局部截斷誤差與整體誤差?整理ppt二、初值問題解的存在唯一性

考慮一階常微分方程的初值問題

/*Initial-ValueProblem*/:則上述IVP存在唯一解。只要在

上連續,且關于y滿足Lipschitz條件,即存在與無關的常數L使對任意定義在上的都成立,整理ppt三、初值問題的離散化方法

離散化方法的基本特點是依照某一遞推公式,值,取。按節點從左至右的順序依次求出的近似

如果計算,只用到前一步的值,則稱這類方法為單步方法。如果計算需用到前r步的值,

,則稱這類方法為r步方法。整理ppt§6.2Euler方法第一步:連續變量離散化第二步:用直線步進·····Euler格式1、Euler格式整理ppt18世紀最杰出的數學家之一,13歲時入讀巴塞爾大學,15歲大學畢業,16歲獲得碩士學位。1727年-1741年(20歲-34歲)在彼得堡科學院從事研究工作,在分析學、數論、力學方面均有出色成就,并應俄國政府要求,解決了不少地圖學、造船業等實際問題。24歲晉升物理學教授。1735年(28歲)右眼失明。整理ppt1741年-1766(34歲-59歲)任德國科學院物理數學所所長,任職25年。在行星運動、剛體運動、熱力學、彈道學、人口學、微分方程、曲面微分幾何等研究領域均有開創性的工作。1766年應沙皇禮聘重回彼得堡,在1771年(64歲)左眼失明。Euler是數學史上最多產的數學家,平均以每年800頁的速度寫出創造性論文。他去世后,人們用35年整理出他的研究成果74卷。

整理ppt

在假設yi=y(xi),即第i步計算是精確的前提下,考慮的截斷誤差Ri=y(xi+1)

yi+1稱為局部截斷誤差/*localtruncationerror*/。定義2.2

若某算法的局部截斷誤差為O(hp+1),則稱該算法有p階精度。定義2.12、歐拉法的局部截斷誤差整理ppt歐拉法的局部截斷誤差:Ri的主項/*leadingterm*/歐拉法具有1階精度。整理ppt例1:

用歐拉公式求解初值問題取步長。解:

應用Euler公式于題給初值問題的具體形式為:

其中。計算結果列于下表:

整理ppt

整理ppt可用來檢驗近似解的準確程度。進行計算,數值解已達到了一定的精度。這個初值問題的準確解為,從上表最后一列,我們看到取步長整理ppt3、歐拉公式的改進:

隱式歐拉法/*implicitEulermethod*/向后差商近似導數x0x1))(,()(1101xyxfhyxy+整理ppt由于未知數yi+1

同時出現在等式的兩邊,不能直接得到,故稱為隱式/*implicit*/

歐拉公式,而前者稱為顯式/*explicit*/歐拉公式。整理ppt一般先用顯式計算一個初值,再迭代求解。隱式歐拉法的局部截斷誤差:即隱式歐拉公式具有1階精度。整理ppt梯形公式

/*trapezoidformula*/—顯、隱式兩種算法的平均注:梯形公式的局部截斷誤差,即梯形公式具有2階精度,比歐拉方法有了進步。但注意到該公式是隱式公式,計算時不得不用到迭代法,其迭代收斂性與歐拉公式相似。整理ppt中點歐拉公式

/*midpointformula*/中心差商近似導數x0x2x1假設,則可以導出即中點公式具有2

階精度。整理ppt方法顯式歐拉隱式歐拉梯形公式中點公式簡單精度低穩定性最好精度低,計算量大精度提高計算量大精度提高,顯式多一個初值,可能影響精度整理ppt改進歐拉法

/*modifiedEuler’smethod*/Step1:

先用顯式歐拉公式作預測,算出Step2:再將代入隱式梯形公式的右邊作校正,得到1+ny整理ppt整理ppt注:此法亦稱為預測-校正法

/*predictor-correctormethod*/可以證明該算法具有2階精度,同時可以看到它是個單步遞推格式,比隱式公式的迭代求解過程簡單。后面將看到,它的穩定性高于顯式歐拉法。改進的歐拉法整理ppt在實際計算時,可將歐拉法與梯形法則相結合,計算公式為應用改進歐拉法,如果序列收斂,它的極限便滿足方程整理ppt改進歐拉法的截斷誤差因此,改進歐拉法公式具有2

階精度整理ppt例2:

用改進Euler公式求解例1中的初值問題,

取步長。解:對此初值問題采用改進Euler公式,其具體形式為計算結果列于下表:例1:

用歐拉公式求解初值問題整理ppt改進的Euler法Euler法整理ppt通過計算結果的比較可以看出,改進的Euler方法的計算精度比Euler方法要高。整理ppt歐拉法誤差概述整理ppt6.3龍格—庫塔方法對許多實際問題來說,歐拉公式與改進歐拉公式精度還不能滿足要求,為此從另一個角度來分析這兩個公式的特點,從而探索一條構造高精度方法的途徑.

整理ppt改進歐拉法整理ppt整理ppt整理ppt

整理ppt整理ppt

整理ppt三階龍格-庫塔方法三階龍格-庫塔方法是用三個值k1,k2,k3的線性組合要使三階龍格-庫塔方法具有三階精度,必須使其局部截斷誤差為O(h4)將k1,k2,k3代入yn+1的表達式中,在

(xn,

yn)

處用二元泰勒公式展開,與y(xn+1)在xn處的泰勒展開式比較整理ppt類似二階龍格-庫塔方法的推導過程,8個待定系數c1,c2,c3,a2,a3,b21,b31,b32應滿足:8個未知參數,6個方程,有無窮多組解三階龍格庫塔公式整理ppt四階Runge-Kutta方法整理ppt附注:二階Runge-Kutta方法的局部截斷誤差只能達到

五階Runge-Kutta方法的局部截斷誤差只能達到

四階Runge-Kutta方法的局部截斷誤差只能達到三階Runge-Kutta方法的局部截斷誤差只能達到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論