



版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年重慶市重點達標名校中考數學最后一模試卷注意事項1.考生要認真填寫考場號和座位序號。2.測試卷所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間2.據史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m3.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠14.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現有如下結論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結論有()A.4個 B.3個 C.2個 D.1個5.﹣0.2的相反數是()A.0.2 B.±0.2 C.﹣0.2 D.26.某校九年級(1)班全體學生實驗考試的成績統計如下表:成績(分)24252627282930人數(人)2566876根據上表中的信息判斷,下列結論中錯誤的是()A.該班一共有40名同學B.該班考試成績的眾數是28分C.該班考試成績的中位數是28分D.該班考試成績的平均數是28分7.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角8.老師在微信群發了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學的說法不正確的是()A.甲 B.乙 C.丙 D.丁9.下列運算正確的是()A.a2?a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b610.若關于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數根,則m的取值范圍是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>1二、填空題(共7小題,每小題3分,滿分21分)11.8的算術平方根是_____.12.拋物線y=2x2+3x+k﹣2經過點(﹣1,0),那么k=_____.13.圖,A,B是反比例函數y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.14.如圖,數軸上點A所表示的實數是________________.15.估計無理數在連續整數___與____之間.16.將直線y=x+b沿y軸向下平移3個單位長度,點A(-1,2)關于y軸的對稱點落在平移后的直線上,則b的值為____.17.若a:b=1:3,b:c=2:5,則a:c=_____.三、解答題(共7小題,滿分69分)18.(10分)九(1)班針對“你最喜愛的課外活動項目”對全班學生進行調查(每名學生分別選一個活動項目),并根據調查結果列出統計表,繪制成扇形統計圖.根據以上信息解決下列問題:,;扇形統計圖中機器人項目所對應扇形的圓心角度數為°;從選航模項目的4名學生中隨機選取2名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.19.(5分)隨著社會的發展,通過微信朋友圈發布自己每天行走的步數已經成為一種時尚.“健身達人”小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調查,把他們6月1日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統計結果如圖所示:請依據統計結果回答下列問題:本次調查中,一共調查了位好友.已知A類好友人數是D類好友人數的5倍.①請補全條形圖;②扇形圖中,“A”對應扇形的圓心角為度.③若小陳微信朋友圈共有好友150人,請根據調查數據估計大約有多少位好友6月1日這天行走的步數超過10000步?20.(8分)某食品廠生產一種半成品食材,產量百千克與銷售價格元千克滿足函數關系式,從市場反饋的信息發現,該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數關系,如下表:銷售價格元千克2410市場需求量百千克12104已知按物價部門規定銷售價格x不低于2元千克且不高于10元千克求q與x的函數關系式;當產量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;當產量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質期短而只能廢棄若該半成品食材的成本是2元千克.求廠家獲得的利潤百元與銷售價格x的函數關系式;當廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本21.(10分)如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.22.(10分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.23.(12分)某景區內從甲地到乙地的路程是,小華步行從甲地到乙地游玩,速度為,走了后,中途休息了一段時間,然后繼續按原速前往乙地,景區從甲地開往乙地的電瓶車每隔半小時發一趟車,速度是,若小華與第1趟電瓶車同時出發,設小華距乙地的路程為,第趟電瓶車距乙地的路程為,為正整數,行進時間為.如圖畫出了,與的函數圖象.(1)觀察圖,其中,;(2)求第2趟電瓶車距乙地的路程與的函數關系式;(3)當時,在圖中畫出與的函數圖象;并觀察圖象,得出小華在休息后前往乙地的途中,共有趟電瓶車駛過.24.(14分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.(1)若前四局雙方戰成2:2,那么甲隊最終獲勝的概率是__________;(2)現甲隊在前兩局比賽中已取得2:0的領先,那么甲隊最終獲勝的概率是多少?
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【答案解析】
直接利用已知無理數得出的取值范圍,進而得出答案.【題目詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【答案點睛】此題主要考查了估算無理數大小,正確得出的取值范圍是解題關鍵.2、C【答案解析】連結OA,如圖所示:
∵CD⊥AB,
∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.3、D【答案解析】
先根據AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【題目詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【答案點睛】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內錯角相等,同旁內角互補.4、C【答案解析】
由∠BEG=45°知∠BEA>45°,結合∠AEF=90°得∠HEC<45°,據此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【答案點睛】本題考查了正方形的性質,等腰三角形的性質,全等三角形的性質和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.5、A【答案解析】
根據相反數的定義進行解答即可.【題目詳解】負數的相反數是它的絕對值,所以﹣0.2的相反數是0.2.故選A.【答案點睛】本題主要考查相反數的定義,熟練掌握這個知識點是解題關鍵.6、D【答案解析】
直接利用眾數、中位數、平均數的求法分別分析得出答案.【題目詳解】解:A、該班一共有2+5+6+6+8+7+6=40名同學,故此選項正確,不合題意;B、該班考試成績的眾數是28分,此選項正確,不合題意;C、該班考試成績的中位數是:第20和21個數據的平均數,為28分,此選項正確,不合題意;D、該班考試成績的平均數是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),故選項D錯誤,符合題意.故選D.【答案點睛】此題主要考查了眾數、中位數、平均數的求法,正確把握相關定義是解題關鍵.7、B【答案解析】
利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【題目詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【答案點睛】考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.8、B【答案解析】
利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質一一判斷即可;【題目詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【答案點睛】本題考查正多邊形的性質、等邊三角形的性質、軸對稱圖形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.9、D【答案解析】根據同底數冪的乘法,合并同類項,同底數冪的除法,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、a2?a4=a6,故此選項錯誤;B、2a2+a2=3a2,故此選項錯誤;C、a6÷a2=a4,故此選項錯誤;D、(ab2)3=a3b6,故此選項正確..故選D.考點:同底數冪的乘法,合并同類項,同底數冪的除法,冪的乘方與積的乘方.10、B【答案解析】
根據方程有兩個不相等的實數根結合根的判別式即可得出△=4-4m>0,解之即可得出結論.【題目詳解】∵關于x的一元二次方程x2-2x+m=0有兩個不相等的實數根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故選B.【答案點睛】本題考查了根的判別式,熟練掌握“當△>0時,方程有兩個不相等的兩個實數根”是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2.【答案解析】測試卷分析:本題主要考查的是算術平方根的定義,掌握算術平方根的定義是解題的關鍵.依據算術平方根的定義回答即可.由算術平方根的定義可知:8的算術平方根是,∵=2,∴8的算術平方根是2.故答案為2.考點:算術平方根.12、3.【答案解析】測試卷解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案為3.13、1.【答案解析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據△AOD的面積為3,列出關系式求得k的值.解:設點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數系數k的幾何意義,以及運用待定系數法求反比例函數解析式,根據△AOD的面積為1列出關系式是解題的關鍵.14、【答案解析】
A點到-1的距離等于直角三角形斜邊的長度,應用勾股定理求解出直角三角形斜邊長度即可.【題目詳解】解:直角三角形斜邊長度為,則A點到-1的距離等于,則A點所表示的數為:﹣1+【答案點睛】本題考查了利用勾股定理求解數軸上點所表示的數.15、34【答案解析】
先找到與11相鄰的平方數9和16,求出算術平方根即可解題.【題目詳解】解:∵,∴,∴無理數在連續整數3與4之間.【答案點睛】本題考查了無理數的估值,屬于簡單題,熟記平方數是解題關鍵.16、1【答案解析】測試卷分析:先根據一次函數平移規律得出直線y=x+b沿y軸向下平移3個單位長度后的直線解析式y=x+b﹣3,再把點A(﹣1,2)關于y軸的對稱點(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案為1.考點:一次函數圖象與幾何變換17、2∶1【答案解析】分析:已知a、b兩數的比為1:3,根據比的基本性質,a、b兩數的比1:3=(1×2):(3×2)=2:6;而b、c的比為:2:5=(2×3):(5×3)=6:1;,所以a、c兩數的比為2:1.詳解:a:b=1:3=(1×2):(3×2)=2:6;
b:c=2:5=(2×3):(5×3)=6:1;,
所以a:c=2:1;
故答案為2:1.點睛:本題主要考查比的基本性質的實際應用,如果已知甲乙、乙丙兩數的比,那么可以根據比的基本性質求出任意兩數的比.三、解答題(共7小題,滿分69分)18、(1),;(2);(3).【答案解析】測試卷分析:(1)利用航模小組先求出數據總數,再求出n.(2)小組所占圓心角=;(3)列表格求概率.測試卷解析:(1);(2);(3)將選航模項目的名男生編上號碼,將名女生編上號碼.用表格列出所有可能出現的結果:由表格可知,共有種可能出現的結果,并且它們都是第可能的,其中“名男生、名女生”有種可能.(名男生、名女生).(如用樹狀圖,酌情相應給分)考點:統計與概率的綜合運用.19、(1)30;(2)①補圖見解析;②120;③70人.【答案解析】分析:(1)由B類別人數及其所占百分比可得總人數;(2)①設D類人數為a,則A類人數為5a,根據總人數列方程求得a的值,從而補全圖形;②用360°乘以A類別人數所占比例可得;③總人數乘以樣本中C、D類別人數和所占比例.詳解:(1)本次調查的好友人數為6÷20%=30人,故答案為:30;(2)①設D類人數為a,則A類人數為5a,根據題意,得:a+6+12+5a=30,解得:a=2,即A類人數為10、D類人數為2,補全圖形如下:②扇形圖中,“A”對應扇形的圓心角為360°×=120°,故答案為:120;③估計大約6月1日這天行走的步數超過10000步的好友人數為150×=70人.點睛:此題主要考查了條形統計圖、扇形統計圖的綜合運用,讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.20、(1);(2);(3);當時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【答案解析】
(1)直接利用待定系數法求出一次函數解析式進而得出答案;(2)由題意可得:p≤q,進而得出x的取值范圍;(3)①利用頂點式求出函數最值得出答案;②利用二次函數的增減性得出答案即可.【題目詳解】(1)設q=kx+b(k,b為常數且k≠0),當x=2時,q=12,當x=4時,q=10,代入解析式得:,解得:,∴q與x的函數關系式為:q=﹣x+14;(2)當產量小于或等于市場需求量時,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;(3)①當產量大于市場需求量時,可得4<x≤10,由題意得:廠家獲得的利潤是:y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;②∵當x時,y隨x的增加而增加.又∵產量大于市場需求量時,有4<x≤10,∴當4<x時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【答案點睛】本題考查了待定系數法求一次函數解析式以及二次函數最值求法等知識,正確得出二次函數解析式是解題的關鍵.21、(1)詳見解析;(2)BD=9.6.【答案解析】測試卷分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.測試卷解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省達州市普通高中2025屆高三下學期3月摸底生物試題含解析
- 晉城市重點中學2024-2025學年5月中考二模生物試題含解析
- 工程項目合同范例匯編
- 版個人借款續期還款合同
- 創業公司借款合同范本
- 統編版三年級語文下冊第一次月考測試卷(含答案)
- 遼寧省沈陽市大東區2018-2019學年八年級上學期期末考試物理試題【含答案】
- 版醫療器械購銷合作協議
- 認籌登記合同細則
- 初中數學冪的乘除-冪的乘方教學設計+2024-2025學年北師大版數學七年級下冊
- 廣東省2024-2025學年佛山市普通高中教學質量檢測物理試卷及答案(二)高三試卷(佛山二模)
- 【9數一模】2025年安徽合肥市第四十五中學九年級中考一模數學試卷(含答案)
- 2024年安徽馬鞍山技師學院專任教師招聘真題
- 電網工程設備材料信息參考價(2024年第四季度)
- DB42T2305-2024高品質住宅技術標準
- 2024年浙江省中考社會試卷真題(含標準答案及評分標準)
- 國有企業采購管理規范 T/CFLP 0027-2020
- 江蘇省無錫市新吳區2023-2024學年八年級下學期期中考試數學試題
- 2023年(第九屆)全國大學生統計建模大賽 論文模板及說明
- 黑龍江省哈爾濱市恒泰石材有限公司(擴大區)建筑用凝灰巖
- 創意綜藝風脫口秀活動策劃PPT模板
評論
0/150
提交評論