《高等數(shù)學(xué)》極限與連續(xù)_第1頁
《高等數(shù)學(xué)》極限與連續(xù)_第2頁
《高等數(shù)學(xué)》極限與連續(xù)_第3頁
《高等數(shù)學(xué)》極限與連續(xù)_第4頁
《高等數(shù)學(xué)》極限與連續(xù)_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第一章二、收斂數(shù)列的性質(zhì)一、數(shù)列極限的定義第一章機(jī)動(dòng)目錄上頁下頁返回結(jié)束極限與連續(xù)第二節(jié)數(shù)列的極限正六邊形的面積正十二邊形的面積正形的面積2、截丈問題:“一尺之棰,日截其半,萬世不竭”“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):播放——?jiǎng)⒒找弧⒏拍畹囊攵?shù)列的定義例如注意:1.數(shù)列對應(yīng)著數(shù)軸上一個(gè)點(diǎn)列.可看作一動(dòng)點(diǎn)在數(shù)軸上依次取2.數(shù)列是整標(biāo)函數(shù)播放三、數(shù)列的極限問題:當(dāng)

無限增大時(shí),是否無限接近于某一確定的數(shù)值?如果是,如何確定?問題:“無限接近”意味著什么?如何用數(shù)學(xué)語言刻劃它.通過上面演示實(shí)驗(yàn)的觀察:定義:自變量取正整數(shù)的函數(shù)稱為數(shù)列,記作或稱為通項(xiàng)(一般項(xiàng)).若數(shù)列及常數(shù)a有下列關(guān)系:當(dāng)n>

N

時(shí),總有記作此時(shí)也稱數(shù)列收斂

,否則稱數(shù)列發(fā)散

.幾何解釋:即或則稱該數(shù)列的極限為a,機(jī)動(dòng)目錄上頁下頁返回結(jié)束例如,趨勢不定收斂發(fā)散機(jī)動(dòng)目錄上頁下頁返回結(jié)束例1.已知證明數(shù)列的極限為1.

證:欲使即只要因此,取則當(dāng)時(shí),就有故機(jī)動(dòng)目錄上頁下頁返回結(jié)束例2.已知證明證:欲使只要即取則當(dāng)時(shí),就有故故也可取也可由N

與有關(guān),但不唯一.不一定取最小的N.說明:

取機(jī)動(dòng)目錄上頁下頁返回結(jié)束例3.設(shè)證明等比數(shù)列證:欲使只要即亦即因此,取,則當(dāng)n>N

時(shí),就有故的極限為

0.機(jī)動(dòng)目錄上頁下頁返回結(jié)束二、收斂數(shù)列的性質(zhì)證:

用反證法.及且取因故存在N1,從而同理,因故存在N2,使當(dāng)n>N2時(shí),有1.收斂數(shù)列的極限唯一.使當(dāng)n>N1時(shí),假設(shè)從而矛盾.因此收斂數(shù)列的極限必唯一.則當(dāng)n>N

時(shí),故假設(shè)不真!滿足的不等式機(jī)動(dòng)目錄上頁下頁返回結(jié)束例4.

證明數(shù)列是發(fā)散的.

證:

用反證法.假設(shè)數(shù)列收斂,則有唯一極限a

存在.取則存在N,但因交替取值1與-1,內(nèi),而此二數(shù)不可能同時(shí)落在長度為1的開區(qū)間使當(dāng)n>N

時(shí),有因此該數(shù)列發(fā)散.機(jī)動(dòng)目錄上頁下頁返回結(jié)束2.收斂數(shù)列一定有界.證:

設(shè)取則當(dāng)時(shí),從而有取則有由此證明收斂數(shù)列必有界.說明:

此性質(zhì)反過來不一定成立.例如,雖有界但不收斂.有數(shù)列機(jī)動(dòng)目錄上頁下頁返回結(jié)束3.收斂數(shù)列的保號性.若且時(shí),有證:對a>0,取推論:若數(shù)列從某項(xiàng)起(用反證法證明)機(jī)動(dòng)目錄上頁下頁返回結(jié)束*********************4.收斂數(shù)列的任一子數(shù)列收斂于同一極限.證:設(shè)數(shù)列是數(shù)列的任一子數(shù)列.若則當(dāng)時(shí),有現(xiàn)取正整數(shù)K,使于是當(dāng)時(shí),有從而有由此證明*********************機(jī)動(dòng)目錄上頁下頁返回結(jié)束由此性質(zhì)可知,若數(shù)列有兩個(gè)子數(shù)列收斂于不同的極限,例如,

發(fā)散!則原數(shù)列一定發(fā)散.機(jī)動(dòng)目錄上頁下頁返回結(jié)束說明:內(nèi)容小結(jié)1.數(shù)列極限的“–N

定義及應(yīng)用2.收斂數(shù)列的性質(zhì):唯一性;有界性;保號性;任一子數(shù)列收斂于同一極限機(jī)動(dòng)目錄上頁下頁返回結(jié)束思考與練習(xí)1.如何判斷極限不存在?方法1.

找一個(gè)趨于∞的子數(shù)列;方法2.

找兩個(gè)收斂于不同極限的子數(shù)列.2.已知,求時(shí),下述作法是否正確?說明理由.設(shè)由遞推式兩邊取極限得不對!此處機(jī)動(dòng)目錄上頁下頁返回結(jié)束作業(yè)P312(單),3,4,5第三節(jié)目錄上頁下頁返回結(jié)束劉徽(約225–295年)我國古代魏末晉初的杰出數(shù)學(xué)家.他撰寫的《重差》對《九章算術(shù)》中的方法和公式作了全面的評注,指出并糾正了其中的錯(cuò)誤,在數(shù)學(xué)方法和數(shù)學(xué)理論上作出了杰出的貢獻(xiàn).他的“割圓術(shù)”求圓周率“割之彌細(xì),所失彌小,割之又割,以至于不可割,則與圓合體而無所失矣”它包含了“用已知逼近未知,用近似逼近精確”的重要極限思想.

的方法:柯西(1789–1857)法國數(shù)學(xué)家,他對數(shù)學(xué)的貢獻(xiàn)主要集中在微積分學(xué),《柯西全集》共有27卷.其中最重要的的是為巴黎綜合學(xué)

校編寫的《分析教程》,《無窮小分析概論》,《微積分在幾何上的應(yīng)用》等,有思想有創(chuàng)建,響廣泛而深遠(yuǎn).對數(shù)學(xué)的影他是經(jīng)典分析的奠人之一,他為微積分所奠定的基礎(chǔ)推動(dòng)了分析的發(fā)展.復(fù)變函數(shù)和微分方程方面.一生發(fā)表論文800余篇,著書7本,1、割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”——?jiǎng)⒒找弧⒏拍畹囊?、割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”——?jiǎng)⒒找弧⒏拍畹囊搿案钪畯浖?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找弧⒏拍畹囊搿案钪畯浖?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找弧⒏拍畹囊搿案钪畯浖?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找弧⒏拍畹囊搿案钪畯浖?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找弧⒏拍畹囊搿案钪畯浖?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找弧⒏拍畹囊搿案钪畯浖?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找弧⒏拍畹囊搿?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論