



版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年廣西南寧青秀區四校聯考中考數學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.2.隨著“三農”問題的解決,某農民近兩年的年收入發生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據①②③三種農作物每種作物每年的收入占該年年收入的比例繪制的扇形統計圖.依據統計圖得出的以下四個結論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農作物的收入3.在中,,,,則的值是()A. B. C. D.4.如圖是由四個相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.5.圖中三視圖對應的正三棱柱是()A. B. C. D.6.如圖,在正方形ABCD中,點E,F分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④7.一個圓錐的底面半徑為,母線長為6,則此圓錐的側面展開圖的圓心角是()A.180° B.150° C.120° D.90°8.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=29.若m,n是一元二次方程x2﹣2x﹣1=0的兩個不同實數根,則代數式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.110.下列運算正確的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3?a5=a15 D.(a3)4=a7二、填空題(共7小題,每小題3分,滿分21分)11.若一次函數y=-2x+b(b為常數)的圖象經過第二、三、四象限,則b的值可以是_________.(寫出一個即可)12.若點A(3,﹣4)、B(﹣2,m)在同一個反比例函數的圖象上,則m的值為.13.如圖,A、B是反比例函數y=(k>0)圖象上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=1.則k=_______.14.若二次根式有意義,則x的取值范圍為__________.15.已知實數x,y滿足,則以x,y的值為兩邊長的等腰三角形的周長是______.16.如圖,△ABC內接于⊙O,DA、DC分別切⊙O于A、C兩點,∠ABC=114°,則∠ADC的度數為_______°.17.分解因式:__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平行四邊形ABCD中,AD>AB.(1)作出∠ABC的平分線(尺規作圖,保留作圖痕跡,不寫作法);(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.19.(5分)如圖,AB為⊙O的直徑,D為⊙O上一點,以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB求證:DC是⊙O的切線;若AB=9,AD=6,求DC的長.20.(8分)小林在沒有量角器和圓規的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的作法是這樣的:如圖:(1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;(2)利用兩個三角板,分別過點M,N畫OM,ON的垂線,交點為P;(3)畫射線OP.則射線OP為∠AOB的平分線.請寫出小林的畫法的依據______.21.(10分)如圖,現有一塊鋼板余料,它是矩形缺了一角,.王師傅準備從這塊余料中裁出一個矩形(為線段上一動點).設,矩形的面積為.(1)求與之間的函數關系式,并注明的取值范圍;(2)為何值時,取最大值?最大值是多少?22.(10分)對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.23.(12分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.24.(14分)如圖,已知拋物線y=x2+bx+c經過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【答案解析】∵∠AED=∠B,∠A=∠A
∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.2、C【答案解析】
A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農作物的收入,此選項錯誤,故選C.【答案點睛】本題主要考查扇形統計圖,解題的關鍵是掌握扇形統計圖是用整個圓表示總數用圓內各個扇形的大小表示各部分數量占總數的百分數,并且通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.3、D【答案解析】
首先根據勾股定理求得AC的長,然后利用正弦函數的定義即可求解.【題目詳解】∵∠C=90°,BC=1,AB=4,
∴,∴,故選:D.【答案點睛】本題考查了三角函數的定義,求銳角的三角函數值的方法:利用銳角三角函數的定義,轉化成直角三角形的邊長的比.4、A【答案解析】【分析】根據正視圖是從物體的正面看得到的圖形即可得.【題目詳解】從正面看可得從左往右2列正方形的個數依次為2,1,如圖所示:故選A.【答案點睛】本題考查了三視圖的知識,正視圖是從物體的正面看得到的視圖.5、A【答案解析】
由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側棱在正前方,從而求解【題目詳解】解:由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側棱在正前方,于是可判定A選項正確.故選A.【答案點睛】本題考查由三視圖判斷幾何體,掌握幾何體的三視圖是本題的解題關鍵.6、C【答案解析】
①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質就可以得出EC=FC,就可以得出AC垂直平分EF,②設BC=a,CE=y,由勾股定理就可以得出EF與x、y的關系,表示出BE與EF,即可判斷BE+DF與EF關系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出x與y的關系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結論.【題目詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【答案點睛】本題考查了正方形的性質的運用,全等三角形的判定及性質的運用,勾股定理的運用,等邊三角形的性質的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質解題時關鍵.7、B【答案解析】
解:,解得n=150°.故選B.考點:弧長的計算.8、A【答案解析】
將方程左邊的多項式利用十字相乘法分解因式,然后利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程,求出一次方程的解即可得到原方程的解.【題目詳解】解:原方程可化為:(x﹣1)(x﹣1)=0,∴x1=1,x1=1.故選:A.【答案點睛】此題考查了解一元二次方程-因式分解法,利用此方法解方程時首先將方程右邊化為0,左邊的多項式分解因式化為積的形式,然后利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.9、B【答案解析】
把m代入一元二次方程,可得,再利用兩根之和,將式子變形后,整理代入,即可求值.【題目詳解】解:∵若,是一元二次方程的兩個不同實數根,∴,∴∴故選B.【答案點睛】本題考查了一元二次方程根與系數的關系,及一元二次方程的解,熟記根與系數關系的公式.10、B【答案解析】
根據同底數冪的乘法、除法、冪的乘方依次計算即可得到答案.【題目詳解】A、a3+a3=2a3,故A錯誤;B、a6÷a2=a4,故B正確;C、a3?a5=a8,故C錯誤;D、(a3)4=a12,故D錯誤.故選:B.【答案點睛】此題考查整式的計算,正確掌握同底數冪的乘法、除法、冪的乘方的計算方法是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-1【答案解析】測試卷分析:根據一次函數的圖象經過第二、三、四象限,可以得出k<1,b<1,隨便寫出一個小于1的b值即可.∵一次函數y=﹣2x+b(b為常數)的圖象經過第二、三、四象限,∴k<1,b<1.考點:一次函數圖象與系數的關系12、1【答案解析】
設反比例函數解析式為y=,根據反比例函數圖象上點的坐標特征得到k=3×(﹣4)=﹣2m,然后解關于m的方程即可.【題目詳解】解:設反比例函數解析式為y=,根據題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點:反比例函數圖象上點的坐標特征.13、2【答案解析】解:分別過點A、B作x軸的垂線,垂足分別為D、E.則AD∥BE,AD=2BE=,∴B、E分別是AC、DC的中點.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==1,解得:k=2.14、x≥﹣.【答案解析】
考點:二次根式有意義的條件.根據二次根式的意義,被開方數是非負數求解.解:根據題意得:1+2x≥0,解得x≥-.故答案為x≥-.15、1或2【答案解析】
先根據非負數的性質列式求出x、y的值,再分x的值是腰長與底邊兩種情況討論求解.【題目詳解】根據題意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰長時,三角形的三邊分別為5、5、7,三角形的周長為1.②5是底邊時,三角形的三邊分別為5、7、7,能組成三角形,5+7+7=2;所以,三角形的周長為:1或2;故答案為1或2.【答案點睛】本題考查了等腰三角形的性質,絕對值與算術平方根的非負性,根據幾個非負數的和等于0,則每一個算式都等于0求出x、y的值是解題的關鍵,難點在于要分情況討論并且利用三角形的三邊關系進行判斷.16、48°【答案解析】
如圖,在⊙O上取一點K,連接AK、KC、OA、OC,由圓的內接四邊形的性質可求出∠AKC的度數,利用圓周角定理可求出∠AOC的度數,由切線性質可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【題目詳解】如圖,在⊙O上取一點K,連接AK、KC、OA、OC.∵四邊形AKCB內接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【答案點睛】本題考查圓內接四邊形的性質、周角定理及切線性質,圓內接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點的直徑;熟練掌握相關知識是解題關鍵.17、a(a-4)2【答案解析】
首先提取公因式a,進而利用完全平方公式分解因式得出即可.【題目詳解】故答案為:【答案點睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關鍵.分解一定要徹底.三、解答題(共7小題,滿分69分)18、解:(1)圖見解析;(2)證明見解析.【答案解析】
(1)根據角平分線的作法作出∠ABC的平分線即可.(2)首先根據角平分線的性質以及平行線的性質得出∠ABE=∠AEB,進而得出△ABO≌△FBO,進而利用AF⊥BE,BO=EO,AO=FO,得出即可.【題目詳解】解:(1)如圖所示:(2)證明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四邊形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四邊形ABFE為菱形.19、(1)見解析;(2)【答案解析】分析:(1)如下圖,連接OD,由OA=OD可得∠DAO=∠ADO,結合∠CAD=∠DAB,可得∠CAD=∠ADO,從而可得OD∥AC,由此可得∠C+∠CDO=180°,結合∠C=90°可得∠CDO=90°即可證得CD是⊙O的切線;(2)如下圖,連接BD,由AB是⊙O的直徑可得∠ADB=90°=∠C,結合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的長了.詳解:(1)如下圖,連接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切線.(2)如下圖,連接BD,∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=9,AD=6,∴BD===3,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴,∴,∴CD=.點睛:這是一道考查“圓和直線的位置關系與相似三角形的判定和性質”的幾何綜合題,作出如圖所示的輔助線,熟悉“圓的切線的判定方法”和“相似三角形的判定和性質”是正確解答本題的關鍵.20、斜邊和一條直角邊分別相等的兩個直角三角形全等;全等三角形的對應角相等;兩點確定一條直線【答案解析】
利用“HL”判斷Rt△OPM≌Rt△OPN,從而得到∠POM=∠PON.【題目詳解】有畫法得OM=ON,∠OMP=∠ONP=90°,則可判定Rt△OPM≌Rt△OPN,所以∠POM=∠PON,即射線OP為∠AOB的平分線.故答案為斜邊和一條直角邊分別相等的兩個直角三角形全等;全等三角形的對應角相等;兩點確定一條直線.【答案點睛】本題考查了作圖?基本作圖,解題關鍵在于熟練掌握基本作圖作一條線段等于已知線段.21、(1);(1)時,取最大值,為.【答案解析】
(1)分別延長DE,FP,與BC的延長線相交于G,H,由AF=x知CH=x-4,根據,即可得z=,利用矩形的面積公式即可得出解析式;
(1)將(1)中所得解析式配方成頂點式,利用二次函數的性質解答可得.【題目詳解】解:(1)分別延長DE,FP,與BC的延長線相交于G,H,
∵AF=x,
∴CH=x-4,
設AQ=z,PH=BQ=6-z,
∵PH∥EG,
∴,即,
化簡得z=,
∴y=?x=-x1+x(4≤x≤10);
(1)y=-x1+x=-(x-)1+,
當x=dm時,y取最大值,最大值是dm1.【答案點睛】本題考查了二次函數的應用,解題的關鍵是根據相似三角形的性質得出矩形另一邊AQ的長及二次函數的性質.22、(1)①6,②2或4,③1<m<4;(2)或.【答案解析】
(1)①根據“折線距離”的定義直接列式計算;②根據“折線距離”的定義列出方程,求解即可;③根據“折線距離”的定義列出式子,可知其幾何意義是數軸上表示數m的點到表示數3的點的距離與到表示數2的點的距離之和小于3.(2)由題意可知,根據圖像易得t的取值范圍.【題目詳解】解:(1)①②∴∴b=2或4③,即數軸上表示數m的點到表示數3的點的距離與到表示數2的點的距離之和小于3,所以1<m<4(2)設E(x,y),則,如圖,若點E在⊙F上,則.【答案點睛】本題主要考查坐標與圖形,正確理解新定義及其幾何意義,利用數形結合的思想思考問題是解題關鍵.23、見解析【答案解析】
由菱形的性質可得,,然后根據角角邊判定,進而得到.【題目詳解】證明:∵菱形ABCD,∴,,∵,,∴,在與中,,∴,∴.【答案點睛】本題考查菱形的性質和全等三角形的判定與性質,根據菱形的性質得到全等條件是解題的關鍵.24、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AECP的面積的最大值是,點P(,﹣);(3)Q(4,1)或(-3,1).【答案解析】
(1)把點A,B的坐標代入拋物線的解析式中,求b,c;(2)設P(m,m2?2m+1),根據S四邊形AECP=S△AEC+S△APC,把S四邊形AECP用含m式子表示,根據二次函數的性質求解;(3)設Q(t,1),分別求出點A,B,C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆安徽省蚌埠局屬學校數學七下期末復習檢測試題含解析
- 貴州省黔東南州麻江縣2025年八年級數學第二學期期末經典試題含解析
- 工業和信息化領域數據安全事件上報(模板)
- 2025屆浙江省江北區七校聯考七年級數學第二學期期末質量檢測試題含解析
- 法律科學的分類及應用試題及答案
- 戰略性儲蓄的思維與方法計劃
- 江蘇省南京市南航附中2025屆八下數學期末學業水平測試模擬試題含解析
- 2025年市場需求分析與預測試題及答案
- 網絡管理員考試知識結構試題及答案細解
- 城市交通環境影響評價師重點基礎知識點
- 食品公司配送路線優化流程
- 房屋安全性鑒定培訓
- 婦科常見疾病及護理常規
- 電機學II知到智慧樹章節測試課后答案2024年秋廣東工業大學
- 抑郁癥與rTMS治療
- DB23T 3630-2023黑龍江省超低能耗建筑節能工程施工質量驗收標準
- 吊籃安裝安全技術交底
- T-CBIA 009-2022 飲料濃漿標準
- 2025屆高三地理一輪復習課件第二部分+4.2區域發展對交通運輸布局的影響
- 《快速時尚品牌》課件
- 2024中華人民共和國學前教育法詳細解讀課件
評論
0/150
提交評論