小學六年級奧數題集錦和答案解析_第1頁
小學六年級奧數題集錦和答案解析_第2頁
小學六年級奧數題集錦和答案解析_第3頁
小學六年級奧數題集錦和答案解析_第4頁
小學六年級奧數題集錦和答案解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

..小學六年級奧數題集錦及答案8A+4B+C/16≈6.4,

所以8A+4B+C≈102.4,由于A、B、C為非0自然數,因此8A+4B+C為一個整數,可能是102,也有可能是103。

當是102時,102/16=6.375

當是103時,103/16=6.4375

4.一個三位數的各位數字之和是17.其中十位數字比個位數字大1.如果把這個三位數的百位數字與個位數字對調,得到一個新的三位數,則新的三位數比原三位數大198,求原數.

答案為476

解:設原數個位為a,則十位為a+1,百位為16-2a

根據題意列方程100a+10a+16-2a-100〔16-2a-10a-a=198

解得a=6,則a+1=716-2a=4

答:原數為476。

5.一個兩位數,在它的前面寫上3,所組成的三位數比原兩位數的7倍多24,求原來的兩位數.

答案為24

解:設該兩位數為a,則該三位數為300+a

7a+24=300+a

a=24

答:該兩位數為24。

6.把一個兩位數的個位數字與十位數字交換后得到一個新數,它與原數相加,和恰好是某自然數的平方,這個和是多少?

答案為121

解:設原兩位數為10a+b,則新兩位數為10b+a

它們的和就是10a+b+10b+a=11〔a+b

因為這個和是一個平方數,可以確定a+b=11

因此這個和就是11×11=121

答:它們的和為121。

7.一個六位數的末位數字是2,如果把2移到首位,原數就是新數的3倍,求原數.

答案為85714

解:設原六位數為abcde2,則新六位數為2abcde〔字母上無法加橫線,請將整個看成一個六位數

再設abcde〔五位數為x,則原六位數就是10x+2,新六位數就是200000+x

根據題意得,〔200000+x×3=10x+2

解得x=85714

所以原數就是857142

答:原數為857142

8.有一個四位數,個位數字與百位數字的和是12,十位數字與千位數字的和是9,如果個位數字與百位數字互換,千位數字與十位數字互換,新數就比原數增加2376,求原數.

答案為3963

解:設原四位數為abcd,則新數為cdab,且d+b=12,a+c=9

根據"新數就比原數增加2376”可知abcd+2376=cdab,列豎式便于觀察

abcd

2376

cdab

根據d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。

再觀察豎式中的個位,便可以知道只有當d=3,b=9;或d=8,b=4時成立。

先取d=3,b=9代入豎式的百位,可以確定十位上有進位。

根據a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。

再觀察豎式中的十位,便可知只有當c=6,a=3時成立。

再代入豎式的千位,成立。

得到:abcd=3963

再取d=8,b=4代入豎式的十位,無法找到豎式的十位合適的數,所以不成立。

9.有一個兩位數,如果用它去除以個位數字,商為9余數為6,如果用這個兩位數除以個位數字與十位數字之和,則商為5余數為3,求這個兩位數.

解:設這個兩位數為ab

10a+b=9b+6

10a+b=5〔a+b+3

化簡得到一樣:5a+4b=3

由于a、b均為一位整數

得到a=3或7,b=3或8

原數為33或78均可以

10.如果現在是上午的10點21分,那么在經過28799...99<一共有20個9>分鐘之后的時間將是幾點幾分?

答案是10:20

解:

〔28799……9〔20個9+1/60/24整除,表示正好過了整數天,時間仍然還是10:21,因為事先計算時加了1分鐘,所以現在時間是10:20

四.排列組合問題

1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人動相鄰的排法有〔

A768種B32種C24種D2的10次方中

解:

根據乘法原理,分兩步:

第一步是把5對夫妻看作5個整體,進行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產生5個5個重復,因此實際排法只有120÷5=24種。

第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種

綜合兩步,就有24×32=768種。

2若把英語單詞hello的字母寫錯了,則可能出現的錯誤共有<>

A119種B36種C59種D48種

解:

5全排列5*4*3*2*1=120

有兩個l所以120/2=60

原來有一種正確的所以60-1=59

五.容斥原理問題

1.有100種赤貧.其中含鈣的有68種,含鐵的有43種,那么,同時含鈣和鐵的食品種類的最大值和最小值分別是<>

A43,25B32,25C32,15D43,11

解:根據容斥原理最小值68+43-100=11

最大值就是含鐵的有43種

2.在多元智能大賽的決賽中只有三道題.已知:<1>某校25名學生參加競賽,每個學生至少解出一道題;<2>在所有沒有解出第一題的學生中,解出第二題的人數是解出第三題的人數的2倍:<3>只解出第一題的學生比余下的學生中解出第一題的人數多1人;<4>只解出一道題的學生中,有一半沒有解出第一題,那么只解出第二題的學生人數是<>

A,5B,6C,7D,8

解:根據"每個人至少答出三題中的一道題"可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。

分別設各類的人數為a1、a2、a3、a12、a13、a23、a123

由〔1知:a1+a2+a3+a12+a13+a23+a123=25…①由〔2知:a2+a23=〔a3+a23×2……②由〔3知:a12+a13+a123=a1-1……③由〔4知:a1=a2+a3……④再由②得a23=a2-a3×2……⑤再由③④得a12+a13+a123=a2+a3-1⑥然后將④⑤⑥代入①中,整理得到

a2×4+a3=26

由于a2、a3均表示人數,可以求出它們的整數解:

當a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22

又根據a23=a2-a3×2……⑤可知:a2>a3

因此,符合條件的只有a2=6,a3=2。

然后可以推出a1=8,a12+a13+a123=7,a23=2,總人數=8+6+2+7+2=25,檢驗所有條件均符。

故只解出第二題的學生人數a2=6人。

3.一次考試共有5道試題。做對第1、2、3、、4、5題的分別占參加考試人數的95%、80%、79%、74%、85%。如果做對三道或三道以上為合格,那么這次考試的合格率至少是多少?

答案:及格率至少為71%。

假設一共有100人考試

100-95=5

100-80=20

100-79=21

100-74=26

100-85=15

5+20+21+26+15=87〔表示5題中有1題做錯的最多人數

87÷3=29〔表示5題中有3題做錯的最多人數,即不及格的人數最多為29人

100-29=71〔及格的最少人數,其實都是全對的

及格率至少為71%

六.抽屜原理、奇偶性問題

1.一只布袋中裝有大小相同但顏色不同的手套,顏色有黑、紅、藍、黃四種,問最少要摸出幾只手套才能保證有3副同色的?

解:可以把四種不同的顏色看成是4個抽屜,把手套看成是元素,要保證有一副同色的,就是1個抽屜里至少有2只手套,根據抽屜原理,最少要摸出5只手套。這時拿出1副同色的后4個抽屜中還剩3只手套。再根據抽屜原理,只要再摸出2只手套,又能保證有一副手套是同色的,以此類推。

把四種顏色看做4個抽屜,要保證有3副同色的,先考慮保證有1副就要摸出5只手套。這時拿出1副同色的后,4個抽屜中還剩下3只手套。根據抽屜原理,只要再摸出2只手套,又能保證有1副是同色的。以此類推,要保證有3副同色的,共摸出的手套有:5+2+2=9〔只

答:最少要摸出9只手套,才能保證有3副同色的。

2.有四種顏色的積木若干,每人可任取1-2件,至少有幾個人去取,才能保證有3人能取得完全一樣?

答案為21

解:

每人取1件時有4種不同的取法,每人取2件時,有6種不同的取法.

當有11人時,能保證至少有2人取得完全一樣:

當有21人時,才能保證到少有3人取得完全一樣.

3.某盒子內裝50只球,其中10只是紅色,10只是綠色,10只是黃色,10只是藍色,其余是白球和黑球,為了確保取出的球中至少包含有7只同色的球,問:最少必須從袋中取出多少只球?

解:需要分情況討論,因為無法確定其中黑球與白球的個數。

當黑球或白球其中沒有大于或等于7個的,那么就是:

6*4+10+1=35<個>

如果黑球或白球其中有等于7個的,那么就是:

6*5+3+1=34〔個

如果黑球或白球其中有等于8個的,那么就是:

6*5+2+1=33

如果黑球或白球其中有等于9個的,那么就是:

6*5+1+1=32

4.地上有四堆石子,石子數分別是1、9、15、31如果每次從其中的三堆同時各取出1個,然后都放入第四堆中,那么,能否經過若干次操作,使得這四堆石子的個數都相同?〔如果能請說明具體操作,不能則要說明理由

不可能。

因為總數為1+9+15+31=56

56/4=14

14是一個偶數

而原來1、9、15、31都是奇數,取出1個和放入3個也都是奇數,奇數加減若干次奇數后,結果一定還是奇數,不可能得到偶數〔14個。

七.路程問題

1.狗跑5步的時間馬跑3步,馬跑4步的距離狗跑7步,現在狗已跑出30米,馬開始追它。問:狗再跑多遠,馬可以追上它?

解:

根據"馬跑4步的距離狗跑7步",可以設馬每步長為7x米,則狗每步長為4x米。

根據"狗跑5步的時間馬跑3步",可知同一時間馬跑3*7x米=21x米,則狗跑5*4x=20米。

可以得出馬與狗的速度比是21x:20x=21:20

根據"現在狗已跑出30米",可以知道狗與馬相差的路程是30米,他們相差的份數是21-20=1,現在求馬的21份是多少路程,就是30÷〔21-20×21=630米

2.甲乙輛車同時從ab兩地相對開出,幾小時后再距中點40千米處相遇?已知,甲車行完全程要8小時,乙車行完全程要10小時,求ab兩地相距多少千米?

答案720千米。

由"甲車行完全程要8小時,乙車行完全程要10小時"可知,相遇時甲行了10份,乙行了8份〔總路程為18份,兩車相差2份。又因為兩車在中點40千米處相遇,說明兩車的路程差是〔40+40千米。所以算式是〔40+40÷〔10-8×〔10+8=720千米。

3.在一個600米的環形跑道上,兄兩人同時從同一個起點按順時針方向跑步,兩人每隔12分鐘相遇一次,若兩個人速度不變,還是在原來出發點同時出發,哥哥改為按逆時針方向跑,則兩人每隔4分鐘相遇一次,兩人跑一圈各要多少分鐘?

答案為兩人跑一圈各要6分鐘和12分鐘。

解:

600÷12=50,表示哥哥、弟弟的速度差

600÷4=150,表示哥哥、弟弟的速度和

〔50+150÷2=100,表示較快的速度,方法是求和差問題中的較大數

〔150-50/2=50,表示較慢的速度,方法是求和差問題中的較小數

600÷100=6分鐘,表示跑的快者用的時間

600/50=12分鐘,表示跑得慢者用的時間

4.慢車車長125米,車速每秒行17米,快車車長140米,車速每秒行22米,慢車在前面行駛,快車從后面追上來,那么,快車從追上慢車的車尾到完全超過慢車需要多少時間?

答案為53秒

算式是〔140+125>÷<22-17>=53秒

可以這樣理解:"快車從追上慢車的車尾到完全超過慢車"就是快車車尾上的點追及慢車車頭的點,因此追及的路程應該為兩個車長的和。

5.在300米長的環形跑道上,甲乙兩個人同時同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,兩人起跑后的第一次相遇在起跑線前幾米?

答案為100米

300÷〔5-4.4=500秒,表示追及時間

5×500=2500米,表示甲追到乙時所行的路程

2500÷300=8圈……100米,表示甲追及總路程為8圈還多100米,就是在原來起跑線的前方100米處相遇。

6.一個人在鐵道邊,聽見遠處傳來的火車汽笛聲后,在經過57秒火車經過她前面,已知火車鳴笛時離他1360米,<軌道是直的>,聲音每秒傳340米,求火車的速度〔得出保留整數

答案為22米/秒

算式:1360÷<1360÷340+57≈22米/秒

關鍵理解:人在聽到聲音后57秒才車到,說明人聽到聲音時車已經從發聲音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7.獵犬發現在離它10米遠的前方有一只奔跑著的野兔,馬上緊追上去,獵犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的動作快,獵犬跑2步的時間,兔子卻能跑3步,問獵犬至少跑多少米才能追上兔子。

正確的答案是獵犬至少跑60米才能追上。

解:

由"獵犬跑5步的路程,兔子要跑9步"可知當獵犬每步a米,則兔子每步5/9米。由"獵犬跑2步的時間,兔子卻能跑3步"可知同一時間,獵犬跑2a米,兔子可跑5/9a*3=5/3a米。從而可知獵犬與兔子的速度比是2a:5/3a=6:5,也就是說當獵犬跑60米時候,兔子跑50米,本來相差的10米剛好追完

8.AB兩地,甲乙兩人騎自行車行完全程所用時間的比是4:5,如果甲乙二人分別同時從AB兩地相對行使,40分鐘后兩人相遇,相遇后各自繼續前行,這樣,乙到達A地比甲到達B地要晚多少分鐘?

答案:18分鐘

解:設全程為1,甲的速度為x乙的速度為y

列式40x+40y=1

x:y=5:4

得x=1/72y=1/90

走完全程甲需72分鐘,乙需90分鐘

故得解

9.甲乙兩車同時從AB兩地相對開出。第一次相遇后兩車繼續行駛,各自到達對方出發點后立即返回。第二次相遇時離B地的距離是AB全程的1/5。已知甲車在第一次相遇時行了120千米。AB兩地相距多少千米?

答案是300千米。

解:通過畫線段圖可知,兩個人第一次相遇時一共行了1個AB的路程,從開始到第二次相遇,一共又行了3個AB的路程,可以推算出甲、乙各自共所行的路程分別是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,從線段圖可以看出,甲一共走了全程的〔1+1/5。

因此360÷〔1+1/5=300千米

從A地到B地,甲、乙兩人騎自行車分別需要4小時、6小時,現在甲乙分別AB兩地同時出發相向而行,相遇時距AB兩地中點2千米。如果二人分別至B地,A地后都立即折回。第二次相遇點第一次相遇點之間有〔千米

10.一船以同樣速度往返于兩地之間,它順流需要6小時;逆流8小時。如果水流速度是每小時2千米,求兩地間的距離?

解:〔1/6-1/8÷2=1/48表示水速的分率

2÷1/48=96千米表示總路程

11.快車和慢車同時從甲乙兩地相對開出,快車每小時行33千米,相遇是已行了全程的七分之四,已知慢車行完全程需要8小時,求甲乙兩地的路程。

解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3

時間比為3:4

所以快車行全程的時間為8/4*3=6小時

6*33=198千米

12.小華從甲地到乙地,3分之1騎車,3分之2乘車;從乙地返回甲地,5分之3騎車,5分之2乘車,結果慢了半小時.已知,騎車每小時12千米,乘車每小時30千米,問:甲乙兩地相距多少千米?

解:

把路程看成1,得到時間系數

去時時間系數:1/3÷12+2/3÷30

返回時間系數:3/5÷12+2/5÷30

兩者之差:〔3/5÷12+2/5÷30-〔1/3÷12+2/3÷30=1/75相當于1/2小時

去時時間:1/2×〔1/3÷12÷1/75和1/2×

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論