



版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某設備使用年限x(年)與所支出的維修費用y(萬元)的統計數據分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年2.函數的一個零點在區間內,則實數a的取值范圍是()A. B. C. D.3.下圖是我國第24~30屆奧運獎牌數的回眸和中國代表團獎牌總數統計圖,根據表和統計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數一直保持上升趨勢B.折線統計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數、銀牌數、銅牌數都有所下降D.統計圖中前六屆奧運會中國代表團的奧運獎牌總數的中位數是54.54.若關于的不等式有正整數解,則實數的最小值為()A. B. C. D.5.已知為定義在上的偶函數,當時,,則()A. B. C. D.6.將函數的圖象向右平移個周期后,所得圖象關于軸對稱,則的最小正值是()A. B. C. D.7.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.8.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.49.已知Sn為等比數列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣8510.已知分別為雙曲線的左、右焦點,點是其一條漸近線上一點,且以為直徑的圓經過點,若的面積為,則雙曲線的離心率為()A. B. C. D.11.已知雙曲線的焦距為,若的漸近線上存在點,使得經過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.12.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,E為邊AC上一點,且,P為BE上一點,且滿足,則的最小值為______.14.若展開式的二項式系數之和為64,則展開式各項系數和為__________.15.已知復數(為虛數單位),則的模為____.16.如圖所示的流程圖中,輸出的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設復數滿足(為虛數單位),則的模為______.18.(12分)如圖,在四棱錐中,側面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.19.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.20.(12分)已知函數,其中e為自然對數的底數.(1)討論函數的單調性;(2)用表示中較大者,記函數.若函數在上恰有2個零點,求實數a的取值范圍.21.(12分)2019年安慶市在大力推進城市環境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數據,其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態分布,近似為這1000人得分的平均值(同一組數據用該區間的中點值作代表),利用該正態分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.22.(10分)已知函數(I)若討論的單調性;(Ⅱ)若,且對于函數的圖象上兩點,存在,使得函數的圖象在處的切線.求證:.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】
根據樣本中心點在回歸直線上,求出,求解,即可求出答案.【題目詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【答案點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.2.C【答案解析】
顯然函數在區間內連續,由的一個零點在區間內,則,即可求解.【題目詳解】由題,顯然函數在區間內連續,因為的一個零點在區間內,所以,即,解得,故選:C【答案點睛】本題考查零點存在性定理的應用,屬于基礎題.3.B【答案解析】
根據表格和折線統計圖逐一判斷即可.【題目詳解】A.中國代表團的奧運獎牌總數不是一直保持上升趨勢,29屆最多,錯誤;B.折線統計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數、銅牌數有所下降,銀牌數有所上升,錯誤;D.統計圖中前六屆奧運會中國代表團的奧運獎牌總數按照順序排列的中位數為,不正確;故選:B【答案點睛】此題考查統計圖,關鍵點讀懂折線圖,屬于簡單題目.4.A【答案解析】
根據題意可將轉化為,令,利用導數,判斷其單調性即可得到實數的最小值.【題目詳解】因為不等式有正整數解,所以,于是轉化為,顯然不是不等式的解,當時,,所以可變形為.令,則,∴函數在上單調遞增,在上單調遞減,而,所以當時,,故,解得.故選:A.【答案點睛】本題主要考查不等式能成立問題的解法,涉及到對數函數的單調性的應用,構造函數法的應用,導數的應用等,意在考查學生的轉化能力,屬于中檔題.5.D【答案解析】
判斷,利用函數的奇偶性代入計算得到答案.【題目詳解】∵,∴.故選:【答案點睛】本題考查了利用函數的奇偶性求值,意在考查學生對于函數性質的靈活運用.6.D【答案解析】
由函數的圖象平移變換公式求出變換后的函數解析式,再利用誘導公式得到關于的方程,對賦值即可求解.【題目詳解】由題意知,函數的最小正周期為,即,由函數的圖象平移變換公式可得,將函數的圖象向右平移個周期后的解析式為,因為函數的圖象關于軸對稱,所以,即,所以當時,有最小正值為.故選:D【答案點睛】本題考查函數的圖象平移變換公式和三角函數誘導公式及正余弦函數的性質;熟練掌握誘導公式和正余弦函數的性質是求解本題的關鍵;屬于中檔題、常考題型.7.D【答案解析】
設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【題目詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【答案點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.8.A【答案解析】
根據題意依次計算得到答案.【題目詳解】根據題意知:,,故,,.故選:.【答案點睛】本題考查了數列值的計算,意在考查學生的計算能力.9.D【答案解析】
由等比數列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據等比數列的前n項和公式解答即可.【題目詳解】設等比數列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【答案點睛】本題主要考查等比數列的前n項和,根據等比數列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.10.B【答案解析】
根據題意,設點在第一象限,求出此坐標,再利用三角形的面積即可得到結論.【題目詳解】由題意,設點在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經過點,則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【答案點睛】本題主要考查雙曲線的離心率,解決本題的關鍵在于求出與的關系,屬于基礎題.11.B【答案解析】
由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【題目詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【答案點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質的應用.12.D【答案解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關性質判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結果。【題目詳解】根據題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據雙曲線性質可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D。【答案點睛】本題考查了圓錐曲線的相關性質,主要考察了圓與雙曲線的相關性質,考查了圓與雙曲線的綜合應用,考查了數形結合思想,體現了綜合性,提高了學生的邏輯思維能力,是難題。二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】試題分析:根據題意有,因為三點共線,所以有,從而有,所以的最小值是.考點:向量的運算,基本不等式.【方法點睛】該題考查的是有關應用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關鍵步驟在于對題中條件的轉化,根據三點共線,結合向量的性質可知,從而等價于已知兩個正數的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應用基本不等式求得結果,最后再加,得出最后的答案.14.1【答案解析】
由題意得展開式的二項式系數之和求出的值,然后再計算展開式各項系數的和.【題目詳解】由題意展開式的二項式系數之和為,即,故,令,則展開式各項系數的和為.故答案為:【答案點睛】本題考查了二項展開式的二項式系數和項的系數和問題,需要運用定義加以區分,并能夠運用公式和賦值法求解結果,需要掌握解題方法.15.【答案解析】,所以.16.4【答案解析】
根據流程圖依次運行直到,結束循環,輸出n,得出結果.【題目詳解】由題:,,,結束循環,輸出.故答案為:4【答案點睛】此題考查根據程序框圖運行結果求輸出值,關鍵在于準確識別循環結構和判斷框語句.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.1【答案解析】
整理已知利用復數的除法運算方式計算,再由求模公式得答案.【題目詳解】因為,即所以的模為1故答案為:1【答案點睛】本題考查復數的除法運算與求模,屬于基礎題.18.(1)證明見解析;(2).【答案解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標系,可求得面PAB的法向量,再運用線面角的向量求法,可求得直線與平面所成角的余弦值.【題目詳解】(1),,又,,,而、分別是、的中點,,故面,又且,故四邊形是平行四邊形,面,又,是面內的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【答案點睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.19.(1)平行,證明見解析;(2).【答案解析】
(1)由題意及圖形的翻折規律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【題目詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【答案點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎題.20.(1)函數的單調遞增區間為和,單調遞減區間為;(2).【答案解析】
(1)由題可得,結合的范圍判斷的正負,即可求解;(2)結合導數及函數的零點的判定定理,分類討論進行求解【題目詳解】(1),①當時,,∴函數在內單調遞增;②當時,令,解得或,當或時,,則單調遞增,當時,,則單調遞減,∴函數的單調遞增區間為和,單調遞減區間為(2)(Ⅰ)當時,所以在上無零點;(Ⅱ)當時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當時,,所以此時只需考慮函數在上零點的情況,因為,所以①當時,在上單調遞增。又,所以(ⅰ)當時,在上無零點;(ⅱ)當時,,又,所以此時在上恰有一個零點;②當時,令,得,由,得;由,得,所以在上單調遞減,在上單調遞增,因為,,所以此時在上恰有一個零點,綜上,【答案點睛】本題考查利用導數求函數單調區間,考查利用導數處理零點個數問題,考查運算能力,考查分類討論思想21.(1)(2)詳見解析【答案解析】
(1)利用頻率分布直方圖平均數等于小矩形的面積乘以底邊中點橫坐標之和,再利用正態分布的對稱性進行求解.(2)寫出隨機變量的所有可能取值,利用互斥事件和相互獨立事件同時發生的概率計算公式,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高效辦公技巧培訓
- 裝修垃圾倒運方案范本
- 唐山學院《中醫基礎綜合實訓》2023-2024學年第一學期期末試卷
- 昆明文理學院《歌唱的呼吸與發聲》2023-2024學年第二學期期末試卷
- 長春大學旅游學院《激光器件與技術》2023-2024學年第一學期期末試卷
- 棗莊職業學院《工程制圖基礎》2023-2024學年第二學期期末試卷
- 四川大學《路橋工程施工與養護管理》2023-2024學年第一學期期末試卷
- 2025年度工程建設項目招標投標合同協議范本
- 天津商務職業學院《員工招聘與素質測評》2023-2024學年第二學期期末試卷
- 臨沂職業學院《電工電子技能訓練》2023-2024學年第二學期期末試卷
- 《清華大學介紹》課件
- DB33T 2383-2021 公路工程強力攪拌就地固化設計與施工技術規范
- 攪拌站場地租賃合同
- 2022-2023學年浙江省杭州市余杭區小學三年級下冊語文期中試題及答案
- 醫用耗材服務方案
- 電動汽車高壓系統基本原理與維修單選題100道及答案解析
- GB/T 9755-2024合成樹脂乳液墻面涂料
- 語音廳合同范例
- 《成分輸血指南》課件
- 【MOOC】新科學家英語:演講與寫作-哈爾濱工業大學 中國大學慕課MOOC答案
- 2024火力發電廠運煤設備抑塵技術規范第4部分:輸送及轉運設備抑塵
評論
0/150
提交評論