




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且2.設,,則的值為()A. B.C. D.3.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.4.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或5.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.6.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.7.已知實數滿足不等式組,則的最小值為()A. B. C. D.8.袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數,則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.9.已知變量x,y間存在線性相關關系,其數據如下表,回歸直線方程為,則表中數據m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.510.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區進行幫扶活動,每人只能去一個社區,每個社區至少一人.其中甲必須去社區,乙不去社區,則不同的安排方法種數為()A.8 B.7 C.6 D.511.函數圖象的大致形狀是()A. B.C. D.12.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發現落在正方形花紋上的米共有51粒,據此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.147二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,a=3,,B=2A,則cosA=_____.14.若函數的圖像與直線的三個相鄰交點的橫坐標分別是,,,則實數的值為________.15.在中,,,,則繞所在直線旋轉一周所形成的幾何體的表面積為______________.16.已知向量滿足,,則______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(),是的導數.(1)當時,令,為的導數.證明:在區間存在唯一的極小值點;(2)已知函數在上單調遞減,求的取值范圍.18.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸建立極坐標系,射線的極坐標方程為,射線的極坐標方程為.(Ⅰ)寫出曲線的極坐標方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.19.(12分)設函數.(1)若,求函數的值域;(2)設為的三個內角,若,求的值;20.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.21.(12分)已知,.(1)解不等式;(2)若方程有三個解,求實數的取值范圍.22.(10分)貧困人口全面脫貧是全面建成小康社會的標志性指標.黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰,建立解決相對貧困的長效機制”對當前和下一個階段的扶貧工作進行了前瞻性的部署,即2020年要通過精準扶貧全面消除絕對貧困,實現全面建成小康社會的奮斗目標.為了響應黨的號召,某市對口某貧困鄉鎮開展扶貧工作.對某種農產品加工生產銷售進行指導,經調查知,在一個銷售季度內,每售出一噸該產品獲利5萬元,未售出的商品,每噸虧損2萬元.經統計,兩市場以往100個銷售周期該產品的市場需求量的頻數分布如下表:市場:需求量(噸)90100110頻數205030市場:需求量(噸)90100110頻數106030把市場需求量的頻率視為需求量的概率,設該廠在下個銷售周期內生產噸該產品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據,確定下個銷售周期內生產量噸還是噸?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.2.D【解析】
利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關三角函數求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數關系式,正切差角公式,屬于基礎題目.3.D【解析】
先根據向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.4.D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.5.B【解析】
設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.6.D【解析】
連接,根據題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎題7.B【解析】
作出約束條件的可行域,在可行域內求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實數滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當直線經過點時,截距最小,故,即的最小值為.故選:B【點睛】本題考查了簡單的線性規劃問題,解題的關鍵是作出可行域、理解目標函數的意義,屬于基礎題.8.C【解析】
先確定摸一次中獎的概率,5個人摸獎,相當于發生5次試驗,根據每一次發生的概率,利用獨立重復試驗的公式得到結果.【詳解】從6個球中摸出2個,共有種結果,兩個球的號碼之和是3的倍數,共有摸一次中獎的概率是,5個人摸獎,相當于發生5次試驗,且每一次發生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.【點睛】本題主要考查了次獨立重復試驗中恰好發生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,利用公式做出結果,屬于中檔題.9.A【解析】
計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關鍵是掌握性質:線性回歸直線一定過中心點.10.B【解析】根據題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(?。〤(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.11.B【解析】
判斷函數的奇偶性,可排除A、C,再判斷函數在區間上函數值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數是奇函數,可排除A、C;又當,,可排除D;故選:B.【點睛】本題考查函數表達式判斷函數圖像,屬于中檔題.12.B【解析】
結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知利用正弦定理,二倍角的正弦函數公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數公式在解三角形中的應用,屬于基礎題.14.4【解析】
由題可分析函數與的三個相鄰交點中不相鄰的兩個交點距離為,即,進而求解即可【詳解】由題意得函數的最小正周期,解得故答案為:4【點睛】本題考查正弦型函數周期的應用,考查求正弦型函數中的15.【解析】
由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,根據圓錐側面積計算公式可得.【詳解】解:由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【點睛】本題考查旋轉體的表面積計算問題,屬于基礎題.16.1【解析】
首先根據向量的數量積的運算律求出,再根據計算可得;【詳解】解:因為,所以又所以所以故答案為:【點睛】本題考查平面向量的數量積的運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
(1)設,,注意到在上單增,再利用零點存在性定理即可解決;(2)函數在上單調遞減,則在恒成立,即在上恒成立,構造函數,求導討論的最值即可.【詳解】(1)由已知,,所以,設,,當時,單調遞增,而,,且在上圖象連續不斷.所以在上有唯一零點,當時,;當時,;∴在單調遞減,在單調遞增,故在區間上存在唯一的極小值點,即在區間上存在唯一的極小值點;(2)設,,,∴在單調遞增,,即,從而,因為函數在上單調遞減,∴在上恒成立,令,∵,∴,在上單調遞減,,當時,,則在上單調遞減,,符合題意.當時,在上單調遞減,所以一定存在,當時,,在上單調遞增,與題意不符,舍去.綜上,的取值范圍是【點睛】本題考查利用導數研究函數的極值點、不等式恒成立問題,在處理恒成立問題時,通常是構造函數,轉化成函數的最值來處理,本題是一道較難的題.18.(Ⅰ),曲線是以為圓心,為半徑的圓;(Ⅱ).【解析】
(Ⅰ)由曲線的參數方程能求出曲線的普通方程,由此能求出曲線的極坐標方程.(Ⅱ)令,,則,利用誘導公式及二倍角公式化簡,再由余弦函數的性質求出面積的取值范圍;【詳解】解:(Ⅰ)由(為參數)化為普通方程為,整理得曲線是以為圓心,為半徑的圓.(Ⅱ)令,,,,面積的取值范圍為【點睛】本題考查曲線的極坐標方程的求法,考查三角形的面積的求法,考查參數方程、直角坐標方程、極坐標方程的互化等基礎知識,考查運算求解能力,屬于中檔題.19.(1)(2)【解析】
(1)將,利用三角恒等變換轉化為:,,再根據正弦函數的性質求解,(2)根據,得,又為的內角,得到,再根據,利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數的性質,還考查了運算求解的能力,屬于中檔題,20.(1);(2)見解析【解析】
(1)由條件可得,再根據離心率可求得,則可得橢圓方程;(2)當與軸垂直時,設直線的方程為:,與橢圓聯立求得的坐標,通過、斜率之積為列方程可得的值,進而可得的面積;當與軸不垂直時,設,,的方程為,與橢圓方程聯立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,,,橢圓方程為;(2)(?。┊斉c軸垂直時,設直線的方程為:代入得:,,,解得:,;(ⅱ)當與軸不垂直時,設,,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關系,考查韋達定理的應用,考查了學生的計算能力,是中檔題.21.(1);(2).【解析】
(1)對分三種情況討論,分別去掉絕對值符號,然后求解不等式組,再求并集即可得結果;(2).作出函數的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學數學人教版(2024)一年級2025年口算加法教案及反思
- 2025年節能技術服務項目合作計劃書
- 弓鋸床企業縣域市場拓展與下沉戰略研究報告
- 雙門轎跑車企業數字化轉型與智慧升級戰略研究報告
- 彩色噴墨復印機企業縣域市場拓展與下沉戰略研究報告
- 直接記錄到晶片上裝置企業ESG實踐與創新戰略研究報告
- 太陽能炊事器具、保暖器企業ESG實踐與創新戰略研究報告
- 剪切試驗機企業縣域市場拓展與下沉戰略研究報告
- 切膠機企業縣域市場拓展與下沉戰略研究報告
- 新能源汽車用充(換)電站企業數字化轉型與智慧升級戰略研究報告
- 店長勞務合同協議
- 2024年地理中考模擬考試地理(江蘇泰州卷)(A4考試版)
- 乳腺癌診治指南與規范(2025年版)解讀
- 2024年上海嘉定區區屬國有企業招聘真題
- 2025河北建投水務招聘29人易考易錯模擬試題(共500題)試卷后附參考答案
- 常德輔警考試題庫
- 基于核心素養的初中歷史跨學科教學策略研究
- 有理數的加法說課課件2024-2025學年人教版數學七年級上冊
- 肺癌化療護理查房
- GB/T 18655-2025車輛、船和內燃機無線電騷擾特性用于保護車載接收機的限值和測量方法
- 2025年高壓電工作業考試國家總局題庫及答案(共280題)
評論
0/150
提交評論