2023屆云南省紅河哈尼族彝族自治州瀘西一中數學高三上期末統考模擬試題含解析_第1頁
2023屆云南省紅河哈尼族彝族自治州瀘西一中數學高三上期末統考模擬試題含解析_第2頁
2023屆云南省紅河哈尼族彝族自治州瀘西一中數學高三上期末統考模擬試題含解析_第3頁
2023屆云南省紅河哈尼族彝族自治州瀘西一中數學高三上期末統考模擬試題含解析_第4頁
2023屆云南省紅河哈尼族彝族自治州瀘西一中數學高三上期末統考模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,則()A. B. C. D.2.很多關于整數規律的猜想都通俗易懂,吸引了大量的數學家和數學愛好者,有些猜想已經被數學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內容是:對于每一個正整數,如果它是奇數,則將它乘以再加1;如果它是偶數,則將它除以;如此循環,最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.3.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁4.函數(其中,,)的圖象如圖,則此函數表達式為()A. B.C. D.5.音樂,是用聲音來展現美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數學家傅立葉研究了樂聲的本質,他證明了所有的樂聲都能用數學表達式來描述,它們是一些形如的簡單正弦函數的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數學表達式可知,所有泛音的頻率都是基本音頻率的整數倍,稱為基本音的諧波.下列函數中不能與函數構成樂音的是()A. B. C. D.6.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區進行幫扶活動,每人只能去一個社區,每個社區至少一人.其中甲必須去社區,乙不去社區,則不同的安排方法種數為()A.8 B.7 C.6 D.57.由曲線圍成的封閉圖形的面積為()A. B. C. D.8.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”9.的展開式中各項系數的和為2,則該展開式中常數項為A.-40 B.-20 C.20 D.4010.若復數在復平面內對應的點在第二象限,則實數的取值范圍是()A. B. C. D.11.中國古代用算籌來進行記數,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數時,像阿拉伯記數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.12.已知復數,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.秦九韶算法是南宋時期數學家秦九韶提出的一種多項式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入,的值分別為4,5,則輸出的值為______.14.的展開式中項的系數為_______.15.在平面直角坐標系中,若函數在處的切線與圓存在公共點,則實數的取值范圍為_____.16.已知兩點,,若直線上存在點滿足,則實數滿足的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數;⑶試問的值是否與的大小無關,并證明你的結論.18.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.19.(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.20.(12分)如圖,在四棱錐中,側棱底面,,,,,是棱中點.(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;(2)設點是線段上的動點,當點在何處時,直線與平面所成角最大?并求最大角的正弦值.21.(12分)在創建“全國文明衛生城”過程中,運城市“創城辦”為了調查市民對創城工作的了解情況,進行了一次創城知識問卷調查(一位市民只能參加一次),通過隨機抽樣,得到參加問卷調查的人的得分統計結果如表所示:.組別頻數(1)由頻數分布表可以大致認為,此次問卷調查的得分似為這人得分的平均值(同一組中的數據用該組區間的中點值作代表),利用該正態分布,求;(2)在(1)的條件下,“創城辦”為此次參加問卷調查的市民制定如下獎勵方案:①得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;②每次獲贈的隨機話費和對應的概率為:贈送話費的金額(單位:元)概率現有市民甲參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求的分布列與數學期望.附:參考數據與公式:,若,則,,22.(10分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先根據得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.2、B【解析】

根據程序框圖列舉出程序的每一步,即可得出輸出結果.【詳解】輸入,不成立,是偶數成立,則,;不成立,是偶數不成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;成立,跳出循環,輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.3、A【解析】

可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜]有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.4、B【解析】

由圖象的頂點坐標求出,由周期求出,通過圖象經過點,求出,從而得出函數解析式.【詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數表達式為.故選:B.【點睛】本題主要考查三角函數圖象及性質,三角函數的解析式等基礎知識;考查考生的化歸與轉化思想,數形結合思想,屬于基礎題.5、C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數的周期與頻率,考查理解分析能力.6、B【解析】根據題意滿足條件的安排為:A(甲,乙)B(丙)C(?。籄(甲,乙)B(丁)C(丙);A(甲,丙)B(?。〤(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.7、A【解析】

先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應用,屬于基礎題.解題時注意積分區間和被積函數的選取.8、B【解析】

解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關系,考查推理能力,屬于基礎題.9、D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數項=80,由5-2r=-1得r=3,對應的常數項=-40,故所求的常數項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數項==-40+80=4010、B【解析】

復數,在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.11、B【解析】

根據題意表示出各位上的數字所對應的算籌即可得答案.【詳解】解:根據題意可得,各個數碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題.12、B【解析】

利用復數除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復數的除法運算、加法運算,考查復數的模,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1055【解析】

模擬執行程序框圖中的程序,即可求得結果.【詳解】模擬執行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.【點睛】本題考查程序框圖的模擬執行,屬基礎題.14、40【解析】

根據二項定理展開式,求得r的值,進而求得系數.【詳解】根據二項定理展開式的通項式得所以,解得所以系數【點睛】本題考查了二項式定理的簡單應用,屬于基礎題.15、【解析】

利用導數的幾何意義可求得函數在處的切線,再根據切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點睛】本題主要考查了導數的幾何意義求解切線方程的問題,同時也考查了根據直線與圓的位置關系求解參數范圍的問題,屬于基礎題.16、【解析】

問題轉化為求直線與圓有公共點時,的取值范圍,利用數形結合思想能求出結果.【詳解】解:直線,點,,直線上存在點滿足,的軌跡方程是.如圖,直線與圓有公共點,圓心到直線的距離:,解得.實數的取值范圍為.故答案為:.【點睛】本題主要考查直線方程、圓、點到直線的距離公式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設直線的斜率為,得直線MN:,聯立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設直線的斜率為,,則直線MN:聯立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關考點:(1)待定系數求橢圓方程;(2)橢圓簡單的幾何性質;(3)直線與圓錐曲線18、(1)證明見解析;(2)【解析】

(1)由已知可證,即可證明結論;(2)根據已知可證平面,建立空間直角坐標系,求出坐標,進而求出平面和平面的法向量坐標,由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點,∴,∵平面且,∴平面,以為原點,分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,∴設平面的法向量為,則,∴,取,則.設平面的法向量為,則,∴,取,則.∴,設二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點,因為四邊形為平行四邊形,所以為中點,又因為四邊形為菱形,所以為中點,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數學運算的數學核心素養,屬于中檔題.19、證明見解析;1.【解析】

由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當的斜率為時和斜率不為時的情況列出相應式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點在軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當的斜率為時,,,于是,到的距離為,直線與圓相切.當的斜率不為時,設的方程為,與聯立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當且僅當等號成立,所以面積的最小值為1.【點睛】本題主要考查直線與橢圓的位置關系、直線與圓的位置關系等基礎知識,考查運算求解能力、推理論證能力和創新意識,考查化歸與轉化思想,屬于難題.20、(1)為中點,理由見解析;(2)當點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【解析】

(1)為中點,可利用中位線與平行四邊形性質證明,,從而證明平面平面;(2)以A為原點,分別以,,所在直線為、、軸建立空間直角坐標系,利用向量法求出當點在線段靠近的三等分點時,直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點,證明如下:分別為中點,又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論