


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數學模擬測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的一個單調遞增區間是()A. B. C. D.2.函數的圖象的大致形狀是()A. B. C. D.3.已知復數,其中,,是虛數單位,則()A. B. C. D.4.下列函數中,既是奇函數,又在上是增函數的是().A. B.C. D.5.已知定義在上的函數滿足,且當時,,則方程的最小實根的值為()A. B. C. D.6.已知等差數列中,,則()A.20 B.18 C.16 D.147.已知是虛數單位,若,則()A. B.2 C. D.108.已知是平面內互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.9.執行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.10.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}11.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.12.復數的共軛復數為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則______.14.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面15.已知向量,,則______.16.定義在上的偶函數滿足,且,當時,.已知方程在區間上所有的實數根之和為.將函數的圖象向右平移個單位長度,得到函數的圖象,則__________,__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.18.(12分)已知△ABC的內角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.19.(12分)已知函數.(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.20.(12分)已知函數.(Ⅰ)求函數的單調區間;(Ⅱ)當時,求函數在上最小值.21.(12分)中國古代數學經典《數書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.22.(10分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】
利用同角三角函數的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據三角函數單調區間的求法,求得的單調區間,由此確定正確選項.【題目詳解】因為,由單調遞增,則(),解得(),當時,D選項正確.C選項是遞減區間,A,B選項中有部分增區間部分減區間.故選:D【答案點睛】本小題考查三角函數的恒等變換,三角函數的圖象與性質等基礎知識;考查運算求解能力,推理論證能力,數形結合思想,應用意識.2、B【答案解析】
根據函數奇偶性,可排除D;求得及,由導函數符號可判斷在上單調遞增,即可排除AC選項.【題目詳解】函數易知為奇函數,故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數,所以在上單調遞增,故排除A,C.故選:B【答案點睛】本題考查了根據函數解析式判斷函數圖象,導函數性質與函數圖象關系,屬于中檔題.3、D【答案解析】試題分析:由,得,則,故選D.考點:1、復數的運算;2、復數的模.4、B【答案解析】
奇函數滿足定義域關于原點對稱且,在上即可.【題目詳解】A:因為定義域為,所以不可能時奇函數,錯誤;B:定義域關于原點對稱,且滿足奇函數,又,所以在上,正確;C:定義域關于原點對稱,且滿足奇函數,,在上,因為,所以在上不是增函數,錯誤;D:定義域關于原點對稱,且,滿足奇函數,在上很明顯存在變號零點,所以在上不是增函數,錯誤;故選:B【答案點睛】此題考查判斷函數奇偶性和單調性,注意奇偶性的前提定義域關于原點對稱,屬于簡單題目.5、C【答案解析】
先確定解析式求出的函數值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【題目詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【答案點睛】本題考查函數與方程的根的最小值問題,涉及函數極大值、函數解析式的求法等知識,本題有一定的難度及高度,是一道有較好區分度的壓軸選這題.6、A【答案解析】
設等差數列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【題目詳解】設等差數列的公差為.由得,解得.所以.故選:A【答案點睛】本題主要考查了等差數列的基本量求解,屬于基礎題.7、C【答案解析】
根據復數模的性質計算即可.【題目詳解】因為,所以,,故選:C【答案點睛】本題主要考查了復數模的定義及復數模的性質,屬于容易題.8、C【答案解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設,則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數性質.9、B【答案解析】
列出循環的每一步,進而可求得輸出的值.【題目詳解】根據程序框圖,執行循環前:,,,執行第一次循環時:,,所以:不成立.繼續進行循環,…,當,時,成立,,由于不成立,執行下一次循環,,,成立,,成立,輸出的的值為.故選:B.【答案點睛】本題考查的知識要點:程序框圖的循環結構和條件結構的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.10、B【答案解析】
按補集、交集定義,即可求解.【題目詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【答案點睛】本題考查集合間的運算,屬于基礎題.11、D【答案解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.12、D【答案解析】
直接相乘,得,由共軛復數的性質即可得結果【題目詳解】∵∴其共軛復數為.故選:D【答案點睛】熟悉復數的四則運算以及共軛復數的性質.二、填空題:本題共4小題,每小題5分,共20分。13、1【答案解析】
根據向量加法和減法的坐標運算,先分別求得與,再結合向量的模長公式即可求得的值.【題目詳解】向量,則,則因為即,化簡可得解得故答案為:【答案點睛】本題考查了向量坐標加法和減法的運算,向量模長的求法,屬于基礎題.14、π.【答案解析】
設三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【題目詳解】如圖所示,設三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構成的圖形的面積為π×O【答案點睛】本題考查三棱錐的外接球的相關問題,根據立體幾何中的線段關系求動點的軌跡,屬于中檔題.15、【答案解析】
求出,然后由模的平方轉化為向量的平方,利用數量積的運算計算.【題目詳解】由題意得,.,.,,.故答案為:.【答案點睛】本題考查求向量的模,掌握數量積的定義與運算律是解題基礎.本題關鍵是用數量積的定義把模的運算轉化為數量積的運算.16、24【答案解析】
根據函數為偶函數且,所以的周期為,的實數根是函數和函數的圖象的交點的橫坐標,在平面直角坐標系中畫出函數圖象,根據函數的對稱性可得所有實數根的和為,從而可得參數的值,最后求出函數的解析式,代入求值即可.【題目詳解】解:因為為偶函數且,所以的周期為.因為時,,所以可作出在區間上的圖象,而方程的實數根是函數和函數的圖象的交點的橫坐標,結合函數和函數在區間上的簡圖,可知兩個函數的圖象在區間上有六個交點.由圖象的對稱性可知,此六個交點的橫坐標之和為,所以,故.因為,所以.故.故答案為:;【答案點睛】本題考查函數的奇偶性、周期性、對稱性的應用,函數方程思想,數形結合思想,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析.(2)【答案解析】
(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【題目詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則,,,,,,,,,,設平面的一個法向量,則即取,則,,所以,設平面的一個法向量,則即取,則,,所以,設平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【答案點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ)(Ⅱ)【答案解析】
(Ⅰ)根據條件由正弦定理得,又c=2a,所以,由余弦定理算出,進而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【題目詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【答案點睛】本題主要考查了正余弦定理的應用,運用二倍角公式和兩角和的正弦公式求值,考查了學生的運算求解能力.19、(1);(2).【答案解析】
(1)對范圍分類整理得:,分類解不等式即可.(2)利用已知轉化為“當時,”恒成立,利用絕對值不等式的性質可得:,問題得解.【題目詳解】當時,,當時,由得,解得;當時,無解;當時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當時,等價于恒成立,而,∴,故滿足條件的的取值范圍是【答案點睛】本題主要考查了含絕對值不等式的解法,還考查了轉化能力及絕對值不等式的性質,考查計算能力,屬于中檔題.20、(Ⅰ)見解析;(Ⅱ)當時,函數的最小值是;當時,函數的最小值是【答案解析】
(1)求出導函數,并且解出它的零點x=,再分區間討論導數的正負,即可得到函數f(x)的單調區間;
(2)分三種情況加以討論,結合函數的單調性與函數值的大小比較,即可得到當0<a<ln2時,函數f(x)的最小值是-a;當a≥ln2時,函數f(x)的最小值是ln2-2a.【題目詳解】函數的定義域
為.
因為,令,可得;
當時,;當時,,綜上所述:可知函數的單調遞增區間為,單調遞減區間為當,即時,函數在區間上是減函數,
的最小值是當,即時,函數在區間上是增函數,的最小值是當,即時,函數在上是增函數,在上是減函數.
又,
當時,的最小值是;
當時,的最小值為綜上所述,結論為當時,函數的最小值是;
當時,函數的最小值是.【答案點睛】求函數極值與最值的步驟:(1)確定函數的定義域;(2)求導數;(3)解方程求出函數定義域內的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區間上的最值還需要比較端點值的函數值與極值的大小21、(1)證明見解析,是,,,,;(2)【答案解析】
(1)根據是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點,,,所在直線為x,y,z軸建立直角坐標系,設,由,解得,得到,從而得到,然后求得平面的一個法向量,代入公式求解.【題目詳解】(1)因為是球的直徑,則,又平面,∴,.∴平面,∴,∴平面.根據證明可知,四面體是鱉臑.它的每個面的直角分別是,,,.(2)如圖,以A為原點,,,所在直線為x,y,z軸建立直角坐標系,則,,,,.M為中點,從而.所以,設,則.由,得.由得,即.所以.設平面的一個法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線與平面所成的角的正弦值為.【答案點睛】本題主要考查線面垂直的判定定理和線面角的向量求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.22、(1);(2)不存在,理由見解析【答案解析】
(1)寫出,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 那一種溫曖為題的中考語文作文
- 礦物加工廠環境保護法規與標準考核試卷
- 消費金融公司激勵機制與績效管理考核試卷
- 批發市場線上線下融合趨勢考核試卷
- 書香校園初二語文作文
- 堿性催化劑在化學反應中的應用考核試卷
- 一年級語文試題-(下冊)識字3
- 文化機械行業的循環經濟與資源利用考核試卷
- 礦物加工技術進展-石墨滑石分離考核試卷
- 廈門高三質檢語文作文2021
- (二模)2025年深圳市高三年級第二次調研考試歷史試卷(含標準答案)
- 婦產科課件-早產臨床防治指南(2024)解讀
- 2024年無錫市錫山環保能源集團招聘筆試參考題庫附帶答案詳解
- 八十天環游地球-完整版PPT
- 康佳led彩電電路原理圖
- 中考英語任務型閱讀解題技巧課件
- 江西省鄱陽湖康山蓄滯洪區安全建設工程項目環境影響報告書
- DB32∕T 2915-2016 化工園區(集中區)應急救援物資配備要求
- (西北)火力發電廠汽水管道支吊架設計手冊
- 文體學eecummings詩歌分析
- 針織毛衫實例
評論
0/150
提交評論