




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、萬有引力習題課專題一 萬有引力定律在天文學上的應用天體質量密度的計算估算發現未知天體專題二 一般衛星與同步衛星專題三 穩定運行與變軌運行專題四 行星上的物體和近地衛星與同步衛星專題五:雙星及多星專題六: 天體圓運動與其它運動專題七: 連續物與小行星群【例】 同步地球衛星離地心的距離為r,運行速率為V1,加速度為a1,在地球赤道上某物體隨地球自轉的向心加速度為a2,第一宇宙速度為V2,地球半徑為R,那么有:AD 例5.太陽光經8min20s到達地球,試估計太陽的質量.取一位有效數字解:設地球繞太陽做勻速圓周運動 由F向=ma向,【練習】地球和月球中心的距離是3.84108m,月球繞地球一周所用的
2、時間是2.3108s 。求:地球的質量。 分析:月球繞地球的運動可以近似地當作勻速圓周運動。設月球的質量為m月,它作圓周運動所需要的向心力就是地球對月球的萬有引力月球繞地球作勻速圓周運動需要的向心力是解答: 地球對月球的萬有引力 說明:根據地球衛星繞地球運行的參數如周期、軌道半徑,能推算出地球的質量,但不能推算衛星的質量;根據行星繞太陽運行的參數,能推算太陽的質量,但不能推算行星的質量。由1、2式得月球繞地球的運動周期約為30天練習1:一均勻圓球體以角速度繞自己的對稱軸自轉,假設維持球體不為離心現象所瓦解的唯一作用力是萬有引力,求該球的最小密度應為多少?解析:設球體質量M,半徑為R,設想有一質
3、點m繞此球體外表附近近做勻速圓周運動或取球體外表的一質點,那么 球體的體積: 球體的密度: 由上三式可得:一人造地球衛星所受向心力及其軌道 人造地球衛星所受向心力就是地球對衛星的萬有引力.r一定,T、V、 、a均一定。速度、角速度、周期與半徑R 的關系 R越大、v越小表達形式 R越大,越小 R越大,T越大兩種最常見的衛星:近地衛星 近地衛星的軌道半徑r可以近似地認為等于地球半徑R,可得其線速度大小為v1=7.9103m/s;可得其周期為T=5088s。 它們分別是繞地球做勻速圓周運動的人造衛星的最大線速度和最小周期。 神舟號飛船的運行軌道離地面的高度為340km,線速度約,周期約90min。
4、同步衛星通信衛星多為同步衛星“同步的含義就是和地球保持相對靜止.(a)其周期等于地球自轉周期,即T=24h。(b)軌道平面:一定是在赤道平面內。(c)只能位于赤道上方某一高度一定的軌道上,運轉方向必須跟地球自轉方向一致即由西向東。(d)同步衛星的線速度=3.08103m/s 通訊衛星可以實現全球的電視轉播,從圖可知,如果能發射三顆相對地面靜止的衛星即同步衛星并相互聯網,即可覆蓋全球的每個角落。地球同步衛星變軌道發射.同步衛星一般不采用普通衛星的直接發射方法,而是采用變軌道發射(1)首先,利用第一級火箭將衛星送到180-200只要是人造地球衛星,其圓心一定在地心。公里的高空,然后依靠慣性進入圓停
5、泊軌道A.停泊軌道停泊軌道同步軌道轉移軌道ABC(2)當到達赤道上空時,第二、三級火箭點火,衛星進入位于赤道平面內的橢圓轉移軌道B,且軌道的遠地點為35800km。3當到達遠地點時,衛星啟動發動機,然后改變方向進入同步軌道C。(二).人造衛星中的超重失重(1).人造衛星發射升空或返回地球時(2).人造衛星進入軌道做勻速圓周運動時衛星做勻速圓周運動,衛星處于完全失重狀態。由牛頓第二定律: F向=m衛a向 即衛星的加速度指向地球大小為: 假設衛星艙中懸吊一物體m,并受兩個力的作用,引力F和拉力T,根據牛頓第二定律有:F引T=ma向 因為物體m的加速度與衛星加速度相同,將 代入,得:T=0,可見物體
6、對懸掛物的拉力為零,同樣可得到物體在衛星艙中對接觸面的壓力也為零,物體處于完全失重狀態,整個衛星也處于完全失重狀態.【例】一宇宙飛船在離地面h的軌道上做勻速圓周運動,質量為m的物塊用彈簧秤掛起,相對于飛船靜止,那么此物塊所受的合外力的大小為 .地球半徑為R,地面的重力加速度為g【練習】月球外表重力加速度為地球外表的1/6,一位在地球外表最多能舉起質量為120kg的杠鈴的運發動,在月球上最多能舉起 A120kg 的杠鈴 B720kg 的杠鈴C重力600N 的杠鈴 D重力720N 的杠鈴B【例】地球上空一宇宙飛船沿地球半徑方向以5m/s2的加速度勻加速離地心而去,飛船中某宇航員質量為48千克,他在
7、此時的視重為270N。地球的半徑為6400km,求飛船此時離地面的高度。設飛船離地面的高度為h,那么而由上述三式解得,h=19200km。解:飛船的視重為【例1】關于第一宇宙速度,下面說法正確的有 A 它是人造衛星繞地球飛行的最小速度 B 它是發射人造衛星進入近地圓軌道的最小速度 C 它是人造衛星繞地球飛行的最大速度 D 它是發射人造衛星繞地球做勻速圓周運動的最大速度。B D【例】1990年3月,紫金山天文臺將該臺發現的第2752號小行星命名為“吳健雄星,將其看作球形,直徑約32km,密度和地球密度相近。假設在此小行星上發射一顆環繞其外表附近運行的衛星,地球的半徑為6400 km,那么此衛星的
8、環繞速度為m/s。 例1.關于人造地球衛星,以下說法正確的選項是地球半徑為6400km A.運行的軌道只能是圓周軌道 B.運行的即時速度值可能等于10km/s C.運行的周期可能等于80min D.勻速圓周運動的衛星中最大速度為專題二 一般衛星與同步衛星BD例2人造衛星在軌道上做勻速圓周運動時,衛星內的物體:A.不再受重力作用 B.仍受重力作用C.不受重力作用而受向心力作用D.既受重力作用又受向心力作用B例3.在軌道上運行的人造衛星,如果衛星上的天線突然折斷,那么天線將:A.做自由落體運動 B.做平拋運動C.和衛星在一起繞地球在同一軌道運動D.由于慣性,沿軌道切線方向做直線運動C例4.在繞地球
9、作圓運動的空間實驗站內,能使用以下有關儀器完成的實驗是: A.用天平測物體質量; B.用彈簧秤,刻度尺等驗證力的平行四邊形法那么; C.用水銀氣壓計測實驗站艙內的氣壓. D。驗證阿基米德定律B例5.發射地球同步衛星時,先將衛星發射至近地圓軌道1,然后經點火,使其沿橢圓軌道2運行,最后再次點火,將衛星送入同步軌道3,軌道1、2、相切于Q點,軌道2、3相切于P點,如下圖。那么當衛星分別在1、2、3軌道上正常運行時,以下說法正確的選項是: A.衛星在軌道3上的速率大于在軌道1上的速率; B.衛星在軌道3上的角速度小于在軌道1上的角速度; C.衛星在軌道1上經過Q點時的加速度大于 它在軌道2上經過Q點
10、時的加速度; D.衛星在軌道2上經過P點時的加速度等于 它在軌道3上經過P點時的加速度。BD分析:從動力學的角度思考,衛星受到的引力使衛星產生運動的加速度 ,所以衛星在軌道上經過點時的加速度等于它在軌道上經過點時的加速度,衛星在軌道上經過點時的加速度等于它在軌道上經過點時的加速度。必須注意,如果從運動學的角度思考 ,由于衛星在不同的軌道上經過一樣點時,不但線速度、角速度不同,而且軌道半徑曲率半徑不同,所以不能做出判斷。答案:B、D例6.假如一作圓周運動的人造地球衛星的軌道半徑增大到原來的2倍,仍作圓周運動,則: A.根據公式v=r,可知衛星運動的線速度將增大到原來的2倍; B.根據公式F= ,
11、可知衛星所需的向心力將減少到原來的1/2; C.根據公式F= ,可知地球提供的向心力將減小到原來的1/4; D.根據上述B和C中給出的公式,可知衛星運動的線速度將減小到原來的 。CDb例7 如圖所示,a 、b、c是在地球大氣層外圓形軌道上的運行的三顆人造衛星,a、b質量相同,且都小于c的質量,則( )A b、c的線速度相等,且大于 a的線速度B b、c的周期相等,且大于a的周期C b、c向心加速度相等,且大于a的 向心加速度D b所需的向心力最小acBD 例8.同步衛星是指相對于地面不動的人造地球衛星: A.它可以在地面上任一點的正上方,且離地心的距離可按需要選擇不同的值; B.它可以在地面上
12、任一點的正上方,但離地心的距離是一定的; C.它只能在赤道的正上方,但離地心的距離可按需要選擇不同值; D.它只能在赤道的正上方,且離地心的距離是一定的。D【例9】用m表示地球通訊衛星(同步衛星)的質量,h表示它離地面的高度,R0表示地球的半徑,g0表示地球外表處的重力加速度,0表示地球自轉的角速度,那么通訊衛星所受的地球對它的萬有引力的大小為( ) A.等于0 B.等于F=mR0g0/(R0+h)2 C.等于 D.以上結果都不對BC【解析】通訊衛星所受萬有引力的大小 F=GMm/(R0+h),地球外表物體的重力可以認為等于萬有引力,即 mg0=GMm/R02. 故GM=g0R02. 由上兩式
13、可得 F=mg0R0/(R0+h). 顯然B是正確由于通訊衛星的角速度等于地球自轉的角速度 ,由于F引=F向,得GMm/(R0+h)2=m02(R0+h),即可得 ,即C也正確.例10.設地球的質量為M,半徑為R,其自轉的角速度為,則地球上空的同步衛星離地面的高度是: A. B. C.2R D.B例11:某一顆人造地球同步衛星距地面的高度為h,設地球半徑為R,自轉周期為,地面處的重力加速度為g,則該同步衛星的線速度的大小應該為: . . C. D.BC專題三 穩定運行與變軌運行例1 宇宙飛船要與環繞地球運轉的軌道空間站對接,飛船為了加速追上軌道空間站( )A 只能從比空間站較低的軌道 上加速B
14、 只能從比空間站較高的軌道 上加速C 只能從與空間站同高的軌道 上加速D 無論在什么軌道,只要加速就行A例2 在地球大氣層外有很多太空垃圾繞地球作圓周運動,每到太陽活動期,由于受太陽的影響,地球大氣層的厚度開場增加,而使得局部垃圾進入大氣層,開場做靠近地球的向心運動,產生這一結果的原因是( )A 由于太空垃圾受到地球引力減小而導致的向心運動B 由于太空垃圾受到地球引力增大而導致的向心運動C 由于太空垃圾受到空氣阻力而導致的向心運動D 地球的引力提供了太空垃圾做勻速圓周運動所需的向心力,故產生向心運動的結果與空氣阻力無關C例3 對于地球的同步地球衛星的精度要求極高,如果稍有偏差衛星就會漂移.如果
15、衛星軌道 周期比地球自轉周期稍大時,衛星就( )A 向東漂移 B 向西漂移C 向南漂移 D 向北漂移B專題四 行星上的物體和近地衛星與同步衛星例二 在某一星球上,宇航員用一彈簧秤稱量一個質量為m的物體其重力為F。乘宇宙飛船在靠近該星球外表空間飛行,測得其環繞周期為T。萬有引力恒量為G,試由以上數據求出該星球的質量。例三 某一物體在地球外表且彈簧秤稱得重力為160N,把該物體放在航天飛機中,假設航天飛機以加速度a= g為地球外表的重力加速度豎直上升,某時刻再用同一彈簧秤稱得物體的視重為90N,忽略地球自轉影響,地球半徑為R,求此時航天器離地面的高度h。例四 海王星的質量是地球的質量的17倍,半徑
16、是地球的4 倍。求海王星的第一宇宙速度。 【例五】 2006年江蘇高考14題A是地球的同步衛星,另一衛星B的圓形軌道位于赤道平面內,離地面高度為h,地球半徑為R,地球自轉角速度0,地球外表的重力加速度為g,O為地球中心。1求衛星B的運動周期2如衛星B繞行方向與地球自轉方向一樣,某時刻A、B兩衛星相距最近O、B、A在同一直線上那么至少經過多長時間,他們再一次相距最近?ABROh假設變為至少經過多長時間,他們再一次相距最遠?由萬有引力定律和向心力公式得 2由題意得 例六 偵察衛星在通過地球兩極上空的圓軌道上運行,它的運行軌道距地面高度為h,要使衛星在一天的時間內將地面上赤道各處在日照條件下的情況全
17、都拍攝下來,衛星在通過赤道上空時,衛星上的攝象機至少應拍攝地面上赤道圓周的長是多少?設地球的半徑為R,地面處的重力加速度為g,地球自轉的周期為T。可紅外拍呢?解:設衛星繞地球做圓周運動的周期為T,衛星質量為m,那么衛星繞地球做圓周運動時,萬有引力提供向心力,有: 對地球外表上的物體m,物體所受的萬有引力近似等于物體所受的重力,有: 聯立兩式解得 衛星相對于地心而言在一個不變的平面內做圓周運動所以要使衛星在一天的時間內將地面上各處在日照條件下的情況都拍攝下來,衛星在通過赤道上空時,衛星的攝像機至少應拍攝地面上的弧長為: 解得 【例七】2003年10月15日上午9時,我國在酒泉衛星發射中心成功發射
18、“神舟五號載人航天飛船,這是我國首次實現載人航天飛行,也是全世界第三個具有發射載人航天器能力的國家“神舟五號飛船長8. 86 m ;質量為7990 kg.飛船在到達預定的橢圓軌道后運行的軌道傾角為42. 4 0,近地點高度200 km,遠地點高度約350 km.實行變軌后,進入離地約350 km的圓軌道上運行,飛船運動14圈后,于16日凌晨在內蒙古成功著陸地球半徑Ro=6.4106 m,地球外表重力加速度g=10 m/s2, ,計算結果保存三位有效數字求: 1)飛船變軌后在軌道上正常運行時的速度2)飛船在圓軌道上運行的周期解析:設飛船的質量為m,地球質量為M.飛船在圓軌道上運行時: 對于地面上
19、質量為m0的物體有: 由上兩式得飛船的運行速度為: 飛船在圓軌道上運行時的周期為: 例1: 在天體運動中,把兩顆相距很近的恒星稱為雙星,這兩顆星必須各自以一定的速率繞某一中心轉動才不至于由于萬有引力而吸在一起。兩恒星的質量分別為M1和M2兩恒星距離為L。求:(1)兩恒星轉動中心的位置;(2)轉動的角速度。分析:如下圖,兩顆恒星分別以轉動中心O作勻速圓周運動,角速度一樣,設M1的轉動半徑為r1,M2的轉動半徑為r2=L-r1;它們之間的萬有引力是各自的向心力。解答:1對M1,有對M2,有專題五:雙星及多星故M12r1=M22(L-r1)2將r1值代入式m1m2OL/2O例2:根據對某一雙星系統的
20、光度學測量確定,該雙星系統中每個星體的質量都是m,兩者的距離是L。1試根據動力學理論計算該雙星系統的運動周期 T。2假設實際觀測到該雙星系統的周期為 ,且 。為了解釋 與T之間的差異,目前有一種理論認為,在兩者連線的中點存在體積很小、質量很大的一個黑洞,假設不考慮其他物質的影響,試根據這一模型和上述觀測結果確定黑洞的質量M。變2:如圖為宇宙中有一個恒星系的示意圖。A為星系的一顆行星,它繞中央恒星O運行的軌道近似為圓。天文學家觀測得到A行星運動的軌道半徑為R0、周期為T0。 經長期觀測發現,A行星實際運動的軌道與圓軌道總存在一些偏離,且周期性地每隔t0時間發生一次最大的偏離。天文學家認為形成這種
21、現象的原因可能是A行星內側還存在著一顆未知的行星B假設其運行軌道與A在同一水平面內,且與A的繞行方向一樣,它對A行星的萬有引力引起A軌道的偏離。根據上述現象及假設,你能否求出未知行星B的運動周期和軌道半徑AO 換一種問法:對未知行星B的運動得到哪些定量的預測?ABROh【例3】 宇宙中存在一些離其他恒星較遠的、由質量相等的三顆星組成的三星系統,通??珊雎云渌求w對它們的引力作用.已觀測到穩定的三星系統存在兩種根本的構成形式:一種是三顆星位于同一直線上,兩顆星圍繞中央星在同一半徑為R的圓軌道上運行;另一種形式是三顆星位于等邊三角形的三個頂點上,并沿外接于等邊三角形的圓形軌道運行.設每個星體的質量
22、均為m.(1)試求第一種形式下,星體運動的線速度和周期.(2)假設兩種形式星體的運動周期一樣,第二種形式下星體之間的距離應為多少?【解析】(1)第一種形式下,由萬有引力定律和牛頓第二定律,得:(2)第二種形式下,由萬有引力定律和牛頓第二定律,得:星體之間的距離為:Om1m2OL/2O 例42021 高考安徽由三顆星體構成的系統,忽略其它星體對它們的作用,存在著一種運動形式:三顆星體在相互之間的萬有引力作用下,分別位于等邊三角形的三個頂點上,繞某一共同的圓心O在三角形所在的平面內做一樣角速度的圓周運動圖示為A、B、C三顆星體質量不一樣時的一般情況。假設A星體質量為2m,B、C兩星體的質量均為m,
23、三角形的邊長為a,求:1A星體所受合力大小FA;2B星體所受合力大小FB; 3C星體的軌道半徑RC;4三星體做圓周運動的周期T。 解:1由萬有引力定律,A星受到B、C的引力的大小:方向如圖,那么合力的大小為:2同上,B星受到的引力分別為:,方向如圖;沿x方向:沿y方向:可得:=3通過對于B的受力分析可知,由于:合力的方向經過BC的中垂線AD的中點,所以圓心O一定在BC的中垂線AD的中點處所以:4由題可知C的受力大小與B的受力一樣,對C星:整理得:例5:宇宙中存在一些離其它恒星較遠的、由質量相等的四顆星組成的四星系統,設其它星體對它們的引力作用可忽略。請設計出四星系統可能存在的兩種穩定的構成形式
24、。假設每顆星體的質量均為m,它們做圓周運動的半徑為R,試分別求出兩種情況下四星系統的運動周期。【解析】對三繞一模式,三顆繞行星軌道半徑均為,所受合力等于向心力,因此有a O O r 解得對正方形模式,四星軌道半徑均為,同理有解得系統 可視天體繞黑洞做圓周運動黑洞與可視天體構成的雙星系統兩顆可視星體構成的雙星系統三星系統(正三角形排列)三星系統(直線等間距排列)圖示向心力的來源黑洞對可視天體的萬有引力彼此給對方的萬有引力彼此給對方的萬有引力另外兩星球對其萬有引力的合力另外兩星球對其萬有引力的合力專題六: 天體圓運動與其它運動例一 2000年1月26日我國發射了一顆同步衛星,其定點位置與東經980
25、的經線在同一平面上。若把甘省嘉峪關處的經度和緯度近似取為東經980和北緯 =400,已知地球半徑為R,地球自轉周期T,地球表面重力加速度g(視為常量)和光速c,試求該同步衛星發出的微波信號傳到嘉峪關處的接收站所需所需的時間(要求用題給的已知量的符號表示)。例題二 宇航員在一星球表面上的某高度,沿水平方向拋出一小球,經過時間t,小球落到星球表面,測得拋出點與落地點之間的距離為L。若拋出的初速度增大到2倍,則拋出點與落地點之間的距離為 ,已知兩落地點都在同一水平面上,該星球的半徑為R,萬有引力常數為G,求該星球的質量。解析:hLS2S七: 連續物與小行星群例一 據觀察,在土星外圍有一個模糊不清的圓
26、環,為了判斷該環是與土星相連的連續物,還是繞土星運轉的小衛星群,測出了環中各層的線速度v以及該層到土星中心的距離R,進而得出v與R的關系。以下判斷正確的選項是;A 假設v與R成正比,那么此環是連續物B 假設v與R成反比,那么此環是小行星群C 假設v2與R成反比,那么此環是小行星群D 假設v2與R成反比,那么此環是連續物AC【例】 同步地球衛星離地心的距離為r,運行速率為V1,加速度為a1,在地球赤道上某物體隨地球自轉的向心加速度為a2,第一宇宙速度為V2,地球半徑為R,那么有:AD 萬有引力定律在天文學上的應用 萬有引力定律的發現,第一次提醒了自然界中一種根本相互作用的規律,對天文學的開展起到
27、了巨大的推動作用.(一)天體質量(密度)的計算(估算): 1.計算天體質量:把衛星(或行星)繞中心天體的運動看成是勻速圓周運動,由中心天體對衛星(或行星)的引力作為它繞中心天體的向心力,根據: 得: 固此,只需測出衛星(或行星)的運動半徑r和周期T,即可算出中心天體的質量M。 例2:如果把地球繞太陽公轉看作是勻速圓周運動,軌道平均半徑約1.5108km ,萬有引力常量G=6.6710-11N. m2/kg2,那么可估算出太陽的質量大 約是 kg。結果取一位有效數字 類題:根據月球繞地球運轉的軌道半徑和周期,可以計算出地球的質量是5.89 21024kg. 例1:某行星一顆小衛星在半徑為r的圓軌
28、道上繞該行星運行,運動的周期是T,萬有引力恒量G,這個行星的質量是多少?21030kg例3:在某星球上,宇航員用彈簧秤稱得質量m的砝碼重量為F,乘宇宙飛船在靠近該星球外表空間飛行,測得其環繞周期是T.根據上述數據,試求該星球的質量.例4:登月密封艙在離月球外表112km的空中繞月球做勻速圓周運動,線速度為,月球半徑為1740km,根據這些數據計算月球的質量。提示:由 求解.7.11022kg例5.太陽光經8min20s到達地球,試估計太陽的質量.取一位有效數字解:設地球繞太陽做勻速圓周運動 由F向=ma向,【練習】地球和月球中心的距離是3.84108m,月球繞地球一周所用的時間是2.3108s 。求:地球的質量。 分析:月球繞地球的運動可以近似地當作勻速圓周運動。設月球的質量為m月,它作圓周運動所需要的向心力就是地球對月球的萬有引力月球繞地球作勻速圓周運動需要的向心力是解答: 地球對月球的萬有引力 說明:根據地球衛星繞地球運行的參
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 行政管理經濟法復習時間安排指南試題及答案
- 房地產土石方運輸協議
- 園林景觀設計在市政中的應用試題及答案
- 城市廣場設計與功能分析試題及答案
- 2024年太陽能熱發電系統投資申請報告代可行性研究報告
- 提升復習效率市政試題及答案技巧
- 板栗釣魚測試題及答案
- 會議室材料采購協議
- 深度復習中級經濟師試題及答案
- 工程經濟考試相關知識的重點試題及答案
- 2.1 充分發揮市場在資源配置中的決定性作用 課件-高中政治統編版必修二經濟與社會
- 《臨床免疫學檢測技術》課件
- 2024年河南鄭州航空港投資集團招聘真題
- 2024年寶應縣公安局招聘警務輔助人員真題
- 《芙蓉樓送辛漸》教學課件
- 2025至2030中國數據標注行業創新現狀及投融資風險研究報告
- 2025-2030中國高拍儀行業市場發展分析及前景趨勢與投資研究報告
- 中汽研X華為 2024年自動駕駛安全模型研究-2025-04-自動駕駛
- 洗浴合同協議模板
- 2024-2025學年高中生物每日一題光合作用與細胞呼吸過程綜合含解析新人教版必修1
- 綠化工考試試題及答案
評論
0/150
提交評論