2022年貴州黔東南州高三第一次模擬考試數學試卷含解析_第1頁
2022年貴州黔東南州高三第一次模擬考試數學試卷含解析_第2頁
2022年貴州黔東南州高三第一次模擬考試數學試卷含解析_第3頁
2022年貴州黔東南州高三第一次模擬考試數學試卷含解析_第4頁
2022年貴州黔東南州高三第一次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知復數z滿足iz2+i,則z的共軛復數是()A12iB1+2iC12iD1+2i2某幾何體的三視圖如圖所示,則該

2、幾何體的體積為( )ABCD3函數(且)的圖象可能為( )ABCD4已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是( )AB4C2D5中國古代數學名著九章算術中記載了公元前344年商鞅督造的一種標準量器商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為( ) A3B3.4C3.8D46已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為( )ABCD7若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為( )ABCD8已知等邊ABC內接于圓:x2+ y2=1,且P是圓上一點,則的最大值是( )AB1CD29已知

3、函數f(x)=xex2+axex-a有三個不同的零點x1,x2,x3 (其中x1x2x3),則1-x1ex121-x2ex21-x3ex3 的值為( )A1B-1CaD-a10已知橢圓:的左,右焦點分別為,過的直線交橢圓于,兩點,若,且的三邊長,成等差數列,則的離心率為( )ABCD11當輸入的實數時,執行如圖所示的程序框圖,則輸出的不小于103的概率是( )ABCD12若集合,則=( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若的展開式中只有第六項的二項式系數最大,則展開式中各項的系數和是_14若、滿足約束條件,則的最小值為_.15一個袋中裝著標有數字1,2,3,4,5的

4、小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數字最大的為4的概率是_16在中,則_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BMAN,(1)證明:平面;(2)求點N到平面CDM的距離18(12分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數方程是:(是參數).(1)若直線l與曲線C相交于A、B兩點,且,試求實數m值.(2)設為曲線上任意一點,求的取值范圍.19(12分)如圖,在直三棱柱ABCA1B1C1中,ABC90,

5、ABAA1,M,N分別是AC,B1C1的中點求證:(1)MN平面ABB1A1;(2)ANA1B20(12分)為了打好脫貧攻堅戰,某貧困縣農科院針對玉米種植情況進行調研,力爭有效地改良玉米品種,為農民提供技術支援,現對已選出的一組玉米的莖高進行統計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米(1)求出易倒伏玉米莖高的中位數;(2)根據莖葉圖的數據,完成下面的列聯表:抗倒伏易倒伏矮莖高莖(3)根據(2)中的列聯表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?附:,0.0500.0100.0013.8416.63510.82821

6、(12分)在平面直角坐標系xoy中,曲線C的方程為.以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)寫出曲線C的極坐標方程,并求出直線l與曲線C的交點M,N的極坐標;(2)設P是橢圓上的動點,求面積的最大值.22(10分)在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.(1)寫出直線的參數方程,并將曲線的方程化為直角坐標方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

7、1D【解析】兩邊同乘-i,化簡即可得出答案【詳解】iz2+i兩邊同乘-i得z=1-2i,共軛復數為1+2i,選D.【點睛】的共軛復數為2D【解析】結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.3D【解析】因為,故函數是奇函數,所以排除A,B;取,則,故選D.考點:1.

8、函數的基本性質;2.函數的圖象.4B【解析】設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,當且僅當三點共線時,取“”號,的最小值為.故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質的應用,體現了數形結合的數學思想,屬于中檔題.5D【解析】根據三視圖即可求得幾何體表面積,即可解得未知數.【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.6

9、B【解析】試題分析:由題意得,所以,所求雙曲線方程為考點:雙曲線方程.7B【解析】根據焦距即可求得參數,再根據點到直線的距離公式即可求得結果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨取;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質,屬綜合基礎題.8D【解析】如圖所示建立直角坐標系,設,則,計算得到答案.【詳解】如圖所示建立直角坐標系,則,設,則.當,即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關鍵.9A【解析】令xex=t,構造g(x)=xex,要使函數f(x)=xe

10、x2+axex-a有三個不同的零點x1,x2,x3(其中x1x20,解得a0或a0,a-4兩個情況分類討論,可求出1-x1ex121-x2ex21-x3ex3的值.【詳解】令xex=t,構造g(x)=xex,求導得g(x)=1-xex,當x0;當x1時,g(x)0,故g(x)在-,1上單調遞增,在1,+上單調遞減,且x0時,g(x)0時,g(x)0,g(x)max=g(1)=1e,可畫出函數g(x)的圖象(見下圖),要使函數f(x)=xex2+axex-a有三個不同的零點x1,x2,x3(其中x1x2x3),則方程t2+at-a=0需要有兩個不同的根t1,t2(其中t10,解得a0或a0,即t

11、1+t2=-a0t1t2=-a0,則t10t21e,則x10 x21x3,且gx2=gx3=t2,故1-x1ex121-x2ex21-x3ex3=1-t121-t22=1-t1+t2+t1t22=1+a-a2=1,若a4t1t2=-a4,由于g(x)max=g(1)=1e,故t1+t22e4,故a-4不符合題意,舍去. 故選A. 【點睛】解決函數零點問題,常常利用數形結合、等價轉化等數學思想.10C【解析】根據等差數列的性質設出,利用勾股定理列方程,結合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,成等差數列,設,.由于,據勾股定理有,即,化簡得;由橢圓定義知

12、的周長為,有,所以,所以;在直角中,由勾股定理,離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數列的性質,屬于中檔題.11A【解析】根據循環結構的運行,直至不滿足條件退出循環體,求出的范圍,利用幾何概型概率公式,即可求出結論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環結構輸出結果、幾何概型的概率,模擬程序運行是解題的關鍵,屬于基礎題.12C【解析】求出集合,然后與集合取交集即可【詳解】由題意,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題二、填空題

13、:本題共4小題,每小題5分,共20分。13【解析】由題意得出展開式中共有11項,;再令求得展開式中各項的系數和【詳解】由的展開式中只有第六項的二項式系數最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數和是:故答案為:1【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數和的求法,屬于基礎題.14【解析】作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數取得最小時對應的最優解,代入目標函數計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯立,解得,即點,平移直線,當直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案

14、為:.【點睛】本題考查簡單的線性規劃問題,考查線性目標函數的最值問題,考查數形結合思想的應用,屬于基礎題.15【解析】由題,得滿足題目要求的情況有,有一個數字4,另外兩個數字從1,2,3里面選和有兩個數字4,另外一個數字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:有一個數字4,另外兩個數字從1,2,3里面選,一共有種情況;有兩個數字4,另外一個數字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學生分析問題和解決問題的能力.161【解

15、析】由已知利用余弦定理可得,即可解得的值【詳解】解:,由余弦定理,可得,整理可得:,解得或(舍去)故答案為:1【點睛】本題主要考查余弦定理在解三角形中的應用,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)證明見解析 (2)【解析】(1)因為正方形ABCD所在平面與梯形ABMN所在平面垂直,平面平面,所以平面ABMN,因為平面ABMN,平面ABMN,所以, 因為,所以,因為,所以,所以,因為在直角梯形ABMN中,所以, 所以,所以,因為,所以平面 (2)如圖,取BM的中點E,則,又BMAN,所以四邊形ABEN是平行四邊形,所以NEAB,又ABCD,所以NECD

16、,因為平面CDM,平面CDM,所以NE平面CDM,所以點N到平面CDM的距離與點E到平面CDM的距離相等, 設點N到平面CDM的距離為h,由可得點B到平面CDM的距離為2h,由題易得平面BCM,所以,且,所以, 又,所以由可得,解得,所以點N到平面CDM的距離為 18(1)或;(2).【解析】(1)將曲線的極坐標方程化為直角坐標方程,在直角坐標條件下求出曲線的圓心坐標和半徑,將直線的參數方程化為普通方程,由勾股定理列出等式可求的值;(2)將圓化為參數方程形式,代入由三角公式化簡可求其取值范圍【詳解】(1)曲線C的極坐標方程是化為直角坐標方程為:直線的直角坐標方程為:圓心到直線l的距離(弦心距)

17、圓心到直線的距離為 :或(2)曲線的方程可化為,其參數方程為:為曲線上任意一點,的取值范圍是19(1)詳見解析;(2)詳見解析.【解析】(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【詳解】(1)設是中點,連接,由于是中點,所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面,平面,所以平面.(2)連接,由于直三棱柱中,而,所以平面,所以,由于,所以.由于四邊形是矩形且,所以四邊形是正方形,所以,由于,所以平面,所以.【點睛】本小題主要考查線面平行的證明,考查線面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.20(1)190(2)見解析 (3)

18、可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關【解析】(1)排序后第10和第11兩個數的平均數為中位數;(2)由莖葉圖可得列聯表;(3)由列聯表計算可得結論【詳解】解:(1)(2)抗倒伏易倒伏矮莖154高莖1016(3)由于,因此可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關【點睛】本題考查莖葉圖,考查獨立性檢驗,正確認識莖葉圖是解題關鍵21(1),;(2).【解析】(1)利用公式即可求得曲線的極坐標方程;聯立直線和曲線的極坐標方程,即可求得交點坐標;(2)設出點坐標的參數形式,將問題轉化為求三角函數最值的問題即可求得.【詳解】(1)曲線的極坐標方程: 聯立,得,又因為都滿足兩方程,故兩曲線的交點為,.(2)易知,直線. 設點,則點到直線的距離(其中). 面積的最大值為.【點睛】本題考查極坐標方程和直角坐標方程之間的相互轉化,涉及利用橢圓的參數方程求面積的最值問題,屬綜合中檔題.22(1)(為參數),;(2)【解析】分析:(1)直線的參數方程為(為參數),其中表示之間的距離,而極坐標方程可化為,從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論