




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為( )ABC2D42若復數(shù)滿足,則()ABCD3盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是( )ABC
2、D4已知函數(shù),若有2個零點,則實數(shù)的取值范圍為( )ABCD5要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點的( )A橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度6已知點在雙曲線上,則該雙曲線的離心率為( )ABCD7定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個內(nèi)角,則的大小關(guān)系是( )ABCD以上情況均有可能8已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直
3、線:,.其中滿足條件的所有直線的編號有( )ABCD9趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為周髀算經(jīng)一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為( )ABCD10已知,則的最小值為( )ABCD11已知復數(shù)滿足:(為虛數(shù)單位),則( )ABCD12在原點附近的部分圖象大概是( )ABCD二、填空題:本題共4小
4、題,每小題5分,共20分。13在三棱錐P-ABC中,三個側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_.14函數(shù)在的零點個數(shù)為_15曲線在點處的切線方程為_.16已知圓柱的兩個底面的圓周在同一個球的球面上,圓柱的高和球半徑均為2,則該圓柱的底面半徑為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),其中(1)求函數(shù)的單調(diào)區(qū)間;若滿足,且求證: (2)函數(shù)若對任意,都有,求的最大值18(12分)如圖,在矩形中,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結(jié).()求證:平面平面;()求直線與平面所成角的正弦值.19(12分)如圖所示,在三棱
5、柱中,為等邊三角形,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.20(12分)的內(nèi)角,的對邊分別為,其面積記為,滿足.(1)求;(2)若,求的值.21(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實數(shù)的值;(2)求證:(,且).22(10分)已知函數(shù)(1)討論的單調(diào)性并指出相應單調(diào)區(qū)間;(2)若,設是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】
6、解:設雙曲線的半個焦距為,由題意又,則,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎題2C【解析】把已知等式變形,利用復數(shù)代數(shù)形式的除法運算化簡,再由復數(shù)模的計算公式求解【詳解】解:由,得,故選C【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法,是基礎題3B【解析】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應用,考查了學生綜合分析,概念理解
7、,數(shù)學運算的能力,屬于中檔題.4C【解析】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,令,可得,當時,函數(shù)在上單調(diào)遞增;當時,函數(shù)在上單調(diào)遞減.當時,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.5C【解析】根據(jù)三角函數(shù)圖像的變換與參數(shù)之間的關(guān)系,即可容易求得.【詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將 向左平移個單位長度,故可得.故選:C.
8、【點睛】本題考查三角函數(shù)圖像的平移,涉及誘導公式的使用,屬基礎題.6C【解析】將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標準方程和離心率的概念,屬于基礎題.7B【解析】由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較【詳解】由可得,即函數(shù)的周期,因為在區(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調(diào)遞增,因為,是銳角三角形的兩個內(nèi)角,所以且即,所以即,故選:【點睛】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性
9、和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵8D【解析】求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,而,與的面積相等,或,即到直線的距離或時滿足條件,根據(jù)點到直線距離可知,滿足條件.故選:D.【點睛】本題考查直線與圓的位置關(guān)系的應用,涉及點到直線的距離公式.9D【解析】設,則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設,則,即小正六邊形的邊長為,所以,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積
10、為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎知識,考查運算求解能力,屬于基礎題10B【解析】 ,選B11A【解析】利用復數(shù)的乘法、除法運算求出,再根據(jù)共軛復數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復數(shù)的四則運算、共軛復數(shù)的概念,屬于基礎題.12A【解析】分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項.【詳解】令,可得,即函數(shù)的定義域為,定義域關(guān)于原點對稱,則函數(shù)為奇函數(shù),排除C、D選項;當時,則,排除B選項.故選:A.【點睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一
11、般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先確定頂點在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設頂點在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個側(cè)面與底面所成的角均為,的高,設內(nèi)切球的半徑為R,內(nèi)切球表面積.故答案為:.【點睛】本題考查三棱錐內(nèi)切球的表面積問題,考查學生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.14【解析】求出的范圍,再由函數(shù)值為零,得到的取值可得
12、零點個數(shù)【詳解】詳解:由題可知,或解得,或故有3個零點【點睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點,屬于基礎題15【解析】求導,得到和,利用點斜式即可求得結(jié)果.【詳解】由于,所以,由點斜式可得切線方程為.故答案為:.【點睛】本題考查利用導數(shù)的幾何意義求切線方程,屬基礎題.16【解析】由圓柱外接球的性質(zhì),即可求得結(jié)果.【詳解】解:由于圓柱的高和球半徑均為2,,則球心到圓柱底面的距離為1,設圓柱底面半徑為,由已知有,即圓柱的底面半徑為.故答案為:.【點睛】本題考查由圓柱的外接球的性質(zhì)求圓柱底面半徑,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)單調(diào)遞增區(qū)間,
13、單調(diào)遞減區(qū)間;詳見解析;(2).【解析】(1)求導可得,再分別求解與的解集,結(jié)合定義域分析函數(shù)的單調(diào)區(qū)間即可.根據(jù)(1)中的結(jié)論,求出的表達式,再分與兩種情況,結(jié)合函數(shù)的單調(diào)性分析的范圍即可.(2)求導分析的單調(diào)性,再結(jié)合單調(diào)性,設去絕對值化簡可得,再構(gòu)造函數(shù),根據(jù)函數(shù)的單調(diào)性與恒成立問題可知,再換元表達求解最大值即可.【詳解】解:,由可得或,由可得,故函數(shù)的單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間;,或,若,因為,故,由知在上單調(diào)遞增,若由可得x1,因為,所以,由在上單調(diào)遞增,綜上時,在上單調(diào)遞減,不妨設由(1)在上單調(diào)遞減,由,可得,所以, 令,可得單調(diào)遞減,所以在上恒成立,即在上恒成立,即,所以, ,
14、所以的最大值【點睛】本題主要考查了分類討論分析函數(shù)單調(diào)性的問題,同時也考查了利用導數(shù)求解函數(shù)不等式以及構(gòu)造函數(shù)分析函數(shù)的最值解決恒成立的問題.需要根據(jù)題意結(jié)合定義域與單調(diào)性分析函數(shù)的取值范圍與最值等.屬于難題.18()詳見解析;().【解析】()根據(jù),可得平面,故而平面平面()過作于,則可證平面,故為所求角,在中利用余弦定理計算,再計算【詳解】解:()因為,平面,平面所以平面,又平面,所以平面平面;()過作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因為, 所以,從而.【點睛】本題考查了面面垂直的判定,考查直線與平面所成角的計算,屬于中檔題19(1)證明見解析(2)【解析】(1)
15、由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標,設平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,故以為原點,所在直線分別為、軸,建立如圖所示的空間直角坐標系;如圖所示:不紡設,則,又因為,所以.所以.設平面的法向量為,則,即,令,則.于是.又因為,設直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.20(1)
16、;(2)【解析】(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡,即可求得和,進而由正弦定理確定,代入整式即可求解.【詳解】(1)因為,所以由三角形面積公式及平面向量數(shù)量積運算可得,所以.因為,所以.(2)因為,所以由正弦定理代入化簡可得,由(1),代入可得,展開化簡可得,根據(jù)輔助角公式化簡可得.因為,所以,所以,所以為等腰三角形,且,所以.【點睛】本題考查了正弦定理在解三角形中的應用,三角形面積公式的應用,平面向量數(shù)量積的運算,正弦和角公式及輔助角公式的簡單應用,屬于基礎題.21(1)1;(2)見解析【解析】(1)分別求得與的導函數(shù),由導函數(shù)與單調(diào)性關(guān)系即可求得的值;(2)由(1)可知當時,當時,因而,構(gòu)造,由對數(shù)運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)函數(shù)在上單調(diào)遞減,即在上恒成立,又函數(shù)在上單調(diào)遞增,即在上恒成立,綜上可知,.(2)證明:由(1)知,當時,函數(shù)在上為減函數(shù),在上為增函數(shù),而,當時,當時,.即,.【點睛】本題考查了導數(shù)與函數(shù)單調(diào)性關(guān)系,放縮法在證明不等式中的應用,屬于難題.22(1)答案見解析(2)【解析】(1)先對函數(shù)進行求導得,對分成和兩種情況討論,從而得到相應的單調(diào)區(qū)間;(2)對函數(shù)求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 圣誕頭飾企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 皮膚掩膜企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 路牌廣告發(fā)布服務企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 可充電備用照明企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 睡眠障礙康復治療
- 2025年南瓜籽仁合作協(xié)議書
- 高層建筑施工環(huán)保風險評估計劃
- 2024-2025學年小學英語六年級下冊個性化教學計劃
- 環(huán)保工程安全生產(chǎn)實施措施
- 醫(yī)療服務流程中的協(xié)調(diào)措施
- 2023年中考語文一輪復習考點梳理+對點訓練(原卷版+解析版)(打包7套)
- 幼兒繪本故事:如果不洗澡
- 2022年《趣味接力跑》教案
- 農(nóng)業(yè)機械使用與維護課程標準
- 汽輪機上缸吊出及翻缸風險分析及管控措施
- 普通高中學生綜合素質(zhì)檔案填寫樣表
- 管道機器人畢業(yè)設計正文
- 國電南自PSL 641U線路保護測控裝置技術(shù)說明書V1.1
- 2022年國網(wǎng)輸變電工程質(zhì)量通病防治工作要求及技術(shù)措施[1]
- 出口退運貨物追溯調(diào)查情況說明表
- 49.5MW風電場變電所電氣部分設計
評論
0/150
提交評論