




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、集合與函數(shù)概念吉林省延邊二中周國華一、教材分析集合語言是現(xiàn)代數(shù)學的基本語言,使用集合語言,可以簡潔、準確地表達數(shù)學的一些內容本章中只將集合作為一種語言來學習,學生將學會使用最基本的集合語言去表示有關的數(shù)學對象,發(fā)展運用數(shù)學語言進行交流的能力函數(shù)的學習促使學生的數(shù)學思維方式發(fā)生了重大的轉變:思維從靜止走向了運動、從運算轉向了關系函數(shù)是高中數(shù)學的核心內容, 是高中數(shù)學課程的一個基本主線,有了這條主線就可以把數(shù)學知識編織在一起,這樣可以使我們對知識的掌握更牢固一些函數(shù)與不等式、數(shù)列、導數(shù)、立體、解析、算法、概率、選修中的很多專題內容有著密切的聯(lián)系用函數(shù)的思想去理解這些內容,是非常重要的出發(fā)點反過來,
2、通過這些內容的學習,加深了對函數(shù)思想的認識函數(shù)的思想方法貫穿于高中數(shù)學課程的始終高中數(shù)學課程中,函數(shù)有許多下位知識,如必修1第二章的冪、指、對函數(shù)數(shù),在必修四將學習三角函數(shù)函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型二、學情分析 1學生的作業(yè)與試卷部分缺失,導致易錯問題分析不全面通過布置易錯點分析的任務,讓學生意識到保留資料的重要性2學生學基本功較扎實,學習態(tài)度較端正,有一定的自主學習能力但是沒有養(yǎng)成及時復習的習慣,有些內容已經(jīng)淡忘通過自主梳理知識,讓學生感受復習的必要性,培養(yǎng)學生良好的復習習慣3在研究例4時,對分類的情況研究的不全面為了突破這個難點,應用幾何畫板制作了課件,給學生形象、直觀的感知
3、,體會二次函數(shù)對稱軸與所給的區(qū)間的位置關系是解決這類問題的關鍵三、設計思路本節(jié)課新課中滲透的理念是:“強調過程教學,啟發(fā)思維,調動學生學習數(shù)學的積極性”在本節(jié)課的學習過程中,教師沒有把梳理好的知識展示給學生,而是讓學生自己進行知識的梳理一方讓學生體會到知識網(wǎng)絡化的必要性,另一方面希望學生養(yǎng)成知識梳理的習慣在本節(jié)課中不斷提出問題,采取問題驅動,引導學生積極思考,讓學生全面參與,整個教學過程尊重學生的思維方式,引導學生在“最近發(fā)展區(qū)”發(fā)現(xiàn)問題、解決問題通過自主分析、交流合作,從而進行有機建構,解決問題,改變學生模仿式的學習方式在教學過程中,滲透了特殊到一般的思想、數(shù)形結合思想、函數(shù)與方程思想在教學
4、過程中通過恰當?shù)膽眯畔⒓夹g,從而突破難點四、教學目標分析(一)知識與技能1了解集合的含義與表示,理解集合間的基本關系,集合的基本運算A:能從集合間的運算分析出集合的基本關系B:對于分類討論問題,能區(qū)分取交還是取并2理解函數(shù)的定義,掌握函數(shù)的基本性質,會運用函數(shù)的圖象理解和研究函數(shù)的性質A:會用定義證明函數(shù)的單調性、奇偶性B:會分析函數(shù)的單調性、奇偶性、對稱性的關系(二)過程與方法1通過學生自主知識梳理,了解自己學習的不足,明確知識的來龍去脈,把學習的內容網(wǎng)絡化、系統(tǒng)化2在解決問題的過程中,學生通過自主探究、合作交流,領悟知識的橫、縱向聯(lián)系,體會集合與函數(shù)的本質(三)情感態(tài)度與價值觀在學生自主
5、整理知識結構的過程中,認識到材料整理的必要性,從而形成及時反思的學習習慣,獨立獲取數(shù)學知識的能力在解決問題的過程中,學生感受到成功的喜悅,樹立學好數(shù)學的信心在例4的解答過程中,滲透動靜結合的思想,讓學生養(yǎng)成理性思維的品質五、重難點分析重點:掌握知識之間的聯(lián)系,洞悉問題的考察點,能選擇合適的知識與方法解決問題難點:含參問題的討論,函數(shù)性質之間的關系六知識梳理(約10分鐘)提出問題問題1:把本章的知識結構用框圖形式表示出來問題2:一個集合中的元素應當是確定的、互異的、無序的,你能結合具體實例說明集合的這些基本要求嗎?問題3:類比兩個數(shù)的關系,思考兩個集合之間的基本關系類比兩個數(shù)的運算,思考兩個集合
6、之間的基本運算,交、并、補問題4:通過本章學習,你對函數(shù)概念有什么新的認識和體會嗎?請結合具體實例分析,表示函數(shù)的三種方法,每一種方法的特點問題5:分析研究函數(shù)的方向,它們之間的聯(lián)系在前一次晚自習上,學生相互展示自己的結果,通過相互討論,每組提供最佳的方案在自己的原有方案的基礎上進行補充與完善學生回答問題要點預設如下:1集合語言可以簡潔準確表達數(shù)學內容2運用集合與對應進一步描述了函數(shù)的概念,與初中的函數(shù)的定義比較,突出了函數(shù)的本質函數(shù)是描述變量之間依賴關系的重要數(shù)學模型3函數(shù)的表示方法主要有三種,這三種表示方法有各自的適用范圍,要根據(jù)具體情況選用4研究函數(shù)的性質時,一般先從幾何直觀觀察圖象入手
7、,然后運用自然語言描述函數(shù)的圖象特征,最后抽象到用數(shù)學符號刻畫相應的數(shù)量特征,也是數(shù)學學習和研究中經(jīng)常使用的方法設計意圖:通過布置任務,讓學生充分的認識自己在學習的過程中,哪些知識學習的不透徹讓學生更有針對的進行復習,讓復習進行的更有效讓學生體會到知識的橫向聯(lián)系與縱向聯(lián)系通過類比初中與高中兩種函數(shù)的定義,讓學生體會到兩種函數(shù)的定義本質是一樣的七、易錯點分析(約3分鐘)問題6:集合中的易錯問題,函數(shù)中的易錯問題?主要是作業(yè)、訓練、考試中出現(xiàn)的問題?(任務提前布置,由課代表匯總,并且在教學課件中體現(xiàn)教師不進行修改,呈現(xiàn)的是原始的)教師展示學和成果并進行點評對于問題6主要由學生討論分析,并回答,其他
8、學生補充這個過程盡量由學生來完成,教師可以適應的引導與點評設計意圖:讓學生學會避開命題者制造的陷阱,通過不斷的分析,讓學生了解問題出現(xiàn)的根源,充分暴露自己的思維,在交流與合作的過程中,改進自己的不足,加深對錯誤的認識通過交流了解別人的錯誤,自己避免出現(xiàn)類似的錯誤八、考察點分析(約5分鐘)問題7:分析集合中的考察點,函數(shù)中的考察點問題8:知識的橫縱聯(lián)系學生回答問題要點預設如下:1集合中元素的互異性2,則集合A可以是空集3交集與并集的區(qū)分,即何時取交,何時取并,特別是含參的分類討論問題4函數(shù)的單調性與奇偶性的證明5作業(yè)與試卷中出現(xiàn)的問題6學生分析本章的考察點,主要分析考察的知識點、思想方法等方面設
9、計意圖: 讓學生了解考察點,才能知道命題者的考察意圖,才能選擇合適的知識與思想方法來解答例如如果試題中出現(xiàn)集合, 無論試題以什么形式出現(xiàn),考察點基本是集合間的基本關系、集合的運算九、典型問題分析例1:設集合(1)若,求實數(shù)的值;(2)若,求的值;(3)若,求的值教師點評,同時板書(1)答案: 或;(2)答案: 或;(3)答案: 由學生分析問題的考察點,包括知識與數(shù)學思想(預設有以下幾個方面)從知識點來分析,這是集合問題考察點主要為集合的表示方法、集合中元素的特性、集合間的基本關系、集合的運算等學生在解第1個問時,可能漏掉特殊情況第2、3問可能會遇到一定的障礙,可以給學生時間進行充分的思考設計意
10、圖:讓學生體會到分析考察點的好處,養(yǎng)成解題之前分析考察點的習慣能順利的找到問題的突破口,為后續(xù)的解答掃清障礙通過一題多問、一題多解、多題歸一,讓學生主動的形成發(fā)散思維,主動應用轉化與化歸的思想例2:已知函數(shù)是定義在R上的奇函數(shù),當時,求函數(shù)的解析式變式:函數(shù)是偶函數(shù)教師對生回答進行點評并板書學生分析考察點、解題思路,如果不完善,其他學生補充學生回答問題要點預設如下:1考察點為函數(shù)的奇偶性與函數(shù)圖象的關系2函數(shù)的奇偶性的定義3轉化與化歸的思想法一:本題即求,函數(shù)的解析式,可先利用函數(shù)的奇偶性繪制函數(shù)的圖象,把本題轉化為二次函數(shù)的圖象與解析式的問題法二:本法更具有一般性,已知時,函數(shù)的解析式,要分
11、析時的函數(shù)對應關系,即當一個數(shù)小于零時,函數(shù)值應當怎樣計算由于函數(shù)具有奇偶性,即一個數(shù)與它的相反數(shù)的函數(shù)值之間有關系, ,所以可以研究的函數(shù)值設計意圖:學生在思考的過程中,體會數(shù)形結合思想函數(shù)的奇偶性與函數(shù)的圖象的關系,可以根據(jù)奇偶性繪制函數(shù)圖象,也可以通過函數(shù)的圖象分析函數(shù)的奇偶性,兩者是相輔相承的體會轉化與化歸的思想,把要研究的轉化為已知的考察函數(shù)的單調性的證明,函數(shù)的奇偶性與單調性之間的關系,體會知識的縱向聯(lián)系體會轉化與化歸的思想、特殊與一般的數(shù)學思想,讓學生體會到問題后面隱含的本質例3:已知是偶函數(shù),而且在上是減函數(shù),判斷在上是增函數(shù)還是減函數(shù),并證明你的判斷 變式1:函數(shù)為奇函數(shù)變式
12、2:你能分析奇函數(shù)(偶函數(shù))在對稱區(qū)間上的單調性的關系嗎?試從數(shù)形兩個方面來分析學生分析考察點、解題思路,如果不完善,其他學生補充學生回答問題要點預設如下:1考察點為函數(shù)的奇偶性與單調性的關系2函數(shù)的單調性的定義3數(shù)形結合、轉化與化歸的思想法一:通過函數(shù)的圖象分析法二:把要研究的范圍轉化為已知的范圍設計意圖:明確函數(shù)的性質是一個有機的整體,不是一個個知識點的簡單羅列同時體會知識的縱向聯(lián)系與橫向聯(lián)系,在第二個方法中進一步感受轉化與的思想通過兩個變式的研究過程,學生體會研究探索性問題的一般思路,即通過特殊情況分析結果,再對結果的正確性進行證明例4:求在區(qū)間上的最大值和最小值變式:在區(qū)間上的最大值是
13、1,求的值教師用幾何畫板演示,二次函數(shù)對稱軸的變化對函數(shù)的最值的影響答案: 時,最大值是,最小值是;時,最大值是,最小值是;時,最大值是,最小值是;時,最大值是,最小值是變式答案:或學生通過直觀的演示,思考問題的考察點與解答策略學生回答考察點分析(預設):1二次函數(shù)的圖象與性質2分類與整合3逆向思維學生回答解題思路分析(預設):研究二次函數(shù)的對稱軸方程與所給的區(qū)間的關系設計意圖:通過幾何畫板的動態(tài)性,給學生直觀的感知,從而建立最近發(fā)展區(qū),進而突破難點通過對二次函數(shù)的研究,學生鞏固了上位知識函數(shù)的圖象與性質,充分體會數(shù)形結合的優(yōu)勢學生在解答變式的過程中, 體會逆向思維與正向思維的關系,體會函數(shù)與方程思想,感受到動靜結合十、課后小結1 知識網(wǎng)絡2 知識的來龍去脈3 問題中體現(xiàn)的數(shù)學思想4 分析問題的基本思路學生總結,教師板書設計意圖: 讓學生把知識竄串,形成網(wǎng)絡,能迅速而準確的選用知識來解答問題十一、課后總結鞏固所學,補充課上的不足主要是本節(jié)課中沒有涉及的問題,本節(jié)課中理解有困難的問題1已知是定義在R上的函數(shù),設,(1)試判斷的奇偶性;(2)試判斷的關系;(3)由此你猜想得出什么樣的結論,并說明理由?2設函數(shù),(1)討論的奇偶性;(2)求的最小值3已知集合,是否存在實數(shù),同時滿足4將長度為20 cm的鐵絲分成兩段,分別圍成一個正方形和一個圓,要使正方形與圓的面積之和最小,正方形的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務開放性邏輯問題試題及答案
- 經(jīng)濟法考試知識點總結試題及答案
- 計算機二級Python考試答題技巧試題及答案
- Delphi與其他編程語言的對比試題及答案
- 2025年財務成本管理知識框架試題及答案
- 計算機二級的建議與思考試題及答案
- 2025年MySQL技術的共享與傳播策略分析試題及答案
- 借助Python進行項目展示與匯報試題及答案
- Msoffice考試高效備考試題及答案
- 計算機二級Python代碼安全審查試題及答案
- 腦電圖及臨床應用
- 新《城鎮(zhèn)燃氣設施運行、維護和搶修安全技術規(guī)程》考試題庫(含答案)
- 第八單元常見的酸、堿、鹽基礎練習題-+2024-2025學年九年級化學科粵版(2024)下冊
- 2025年廣西物流職業(yè)技術學院單招職業(yè)技能測試題庫帶答案
- 端午節(jié)活動:五彩繩
- 萬科物業(yè)綠化養(yǎng)護管理手冊
- 第十二周《遇見勞動之美點亮成長底色》主題班會
- 世界環(huán)境日環(huán)保教育班會 課件
- 臨床診療指南-疼痛學分冊
- 2024認定實際施工人法律風險防范與合同完善服務合同3篇
評論
0/150
提交評論