C25隱函數(shù)與參數(shù)式函數(shù)的導數(shù)_第1頁
C25隱函數(shù)與參數(shù)式函數(shù)的導數(shù)_第2頁
C25隱函數(shù)與參數(shù)式函數(shù)的導數(shù)_第3頁
C25隱函數(shù)與參數(shù)式函數(shù)的導數(shù)_第4頁
C25隱函數(shù)與參數(shù)式函數(shù)的導數(shù)_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第五節(jié)第五節(jié) 隱函數(shù)和參數(shù)式函數(shù)的導數(shù)隱函數(shù)和參數(shù)式函數(shù)的導數(shù) 一、隱函數(shù)的導數(shù)一、隱函數(shù)的導數(shù)二、對數(shù)求導法二、對數(shù)求導法三、參數(shù)式函數(shù)的導數(shù)三、參數(shù)式函數(shù)的導數(shù)* *四、相關(guān)變化率四、相關(guān)變化率五、小結(jié)五、小結(jié) 思考題思考題一、隱函數(shù)的導數(shù)一、隱函數(shù)的導數(shù)定義定義: :( , )0( ).f x yyf x 由由方方程程所所確確定定的的函函數(shù)數(shù)稱稱為為隱隱函函數(shù)數(shù).)(形式稱為顯函數(shù)形式稱為顯函數(shù)xfy 0),( yxf)(xfy 叫隱函數(shù)的顯化叫隱函數(shù)的顯化.問題問題:隱函數(shù)不易顯化或不能顯化如何求導隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則隱函數(shù)求導法則: :用復(fù)合函數(shù)求導法則直

2、接對方程兩邊對用復(fù)合函數(shù)求導法則直接對方程兩邊對x求導求導.例例1 100( ),.xyxxyeedy dyyf xdx dx 求求由由方方程程所所確確定定的的隱隱函函數(shù)數(shù)的的導導數(shù)數(shù)解解,求導求導方程兩邊對方程兩邊對x0 dxdyeedxdyxyyx解得解得,xydyeydxxe , 0, 0 yx由原方程知由原方程知000 xxxyydyeydxxe . 1 例例2 2.,)23,23(,333線通過原點線通過原點在該點的法在該點的法并證明曲線并證明曲線的切線方程的切線方程點點上上求過求過的方程為的方程為設(shè)曲線設(shè)曲線ccxyyxc 解解,:x方方程程兩兩邊邊同同時時對對 求求導導 得得yx

3、yyyx 3333223 3( , )2 223 32( , )2 2yxyyx . 1 所求切線方程為所求切線方程為33(),22yx . 03 yx即即2323 xy法線方程為法線方程為, xy 即即顯然通過原點顯然通過原點.練習練習1 121,(0,0).xyexyy 設(shè)設(shè)求求 在在點點處處的的值值解解2(12),xyeyyxy 0,0 xy代代入入得得001.2xyy 練習練習2 222yarctanlnxy ,y .x 設(shè)設(shè)求求2222()xx yyxyx 解解xyy.xy x yyxy y即即 221 22( xy y )xy 二、對數(shù)求導法二、對數(shù)求導法觀察函數(shù)觀察函數(shù)3sin2

4、(1)1,.(4)xxxxyyxxe 求導方法求導方法先在方程兩邊取對數(shù)先在方程兩邊取對數(shù), , 然后利用隱函數(shù)的求導然后利用隱函數(shù)的求導方法求出導數(shù)方法求出導數(shù). .-對數(shù)求導法對數(shù)求導法適用范圍適用范圍: :( )( ).v xu x多多個個函函數(shù)數(shù)相相乘乘或或是是冪冪指指函函數(shù)數(shù)的的情情形形例例4 4解解 142) 1( 3111)4(1) 1(23 xxxexxxyx等式兩邊取絕對值后再取對數(shù)得等式兩邊取絕對值后再取對數(shù)得111243ln| y| ln| x|ln| x|ln| x|x求求導導得得上上式式兩兩邊邊對對 x142)1(3111 xxxyy32(1)1,.(4)xxxyyx

5、e 設(shè)設(shè)求求例例5 5解解sin(0),.xyxxy 設(shè)設(shè)求求等式兩邊取對數(shù)得等式兩邊取對數(shù)得xxylnsinln 求導得求導得上式兩邊對上式兩邊對xxxxxyy1sinlncos1 )1sinln(cosxxxxyy )sinln(cossinxxxxxx 一般地一般地0v( x )yu( x )(u( x )1 dyv( x )u ( x )v ( x ) lnu( x )y dxu( x ) 又又( )( )v xdyu xdxln yv( x ) lnu( x ) v( x )u ( x )v ( x ) lnu( x ).u( x ) 三、參數(shù)式函數(shù)的導數(shù)三、參數(shù)式函數(shù)的導數(shù)( ),

6、( ).xtyxyt 若若參參數(shù)數(shù)方方程程確確定定 與與 間間的的函函數(shù)數(shù)關(guān)關(guān)系系稱稱此此為為參參數(shù)數(shù)式式的的函函數(shù)數(shù)例如例如 ,22tytx,2xt 22)2(xty 42x xy21 消去參數(shù)消去參數(shù)問題問題: : 消參困難或無法消參如何求導消參困難或無法消參如何求導?t( )xt 設(shè)設(shè)函函數(shù)數(shù)具具有有單單調(diào)調(diào)連連續(xù)續(xù))(1xy , 0)(,)(),( ttytx 且且都可導都可導再設(shè)函數(shù)再設(shè)函數(shù)由復(fù)合函數(shù)及反函數(shù)的求導法則得由復(fù)合函數(shù)及反函數(shù)的求導法則得dxdtdtdydxdy dtdxdtdy1 )()(tt dtdxdtdydxdy 即即( ),( )xtyt 在在方方程程中中1(

7、),tx 的的反反函函數(shù)數(shù)例例6 6解解dtdxdtdydxdy sincot1cos2ttt taatacossin 2cot4tdydx . 1 .方方程程處的切線處的切線在在求擺線求擺線2)cos1()sin( ttayttax.),12(,2ayaxt 時時當當 所求切線方程為所求切線方程為(1),2yaxa (2)0.2xya 即即例例7 7解解0020,cos ,1sin,2(1);(2),.vxv tyv tgtta 不不計計空空氣氣的的阻阻力力 以以初初速速度度發(fā)發(fā)射射角角發(fā)發(fā)射射炮炮彈彈 其其運運動動方方程程為為求求炮炮彈彈在在時時刻刻 的的運運動動方方向向及及速速度度大大小

8、小如如果果中中彈彈點點 也也在在地地平平線線上上 求求炮炮彈彈的的射射程程xyovxvyv0v(1),.tt在在 時時刻刻的的運運動動方方向向即即軌軌跡跡在在 時時刻刻的的切切線線方方向向可可由由切切線線的的斜斜率率來來反反映映2001(sin)2(cos)v tgtdydxv t cossin00vgtv ,tx y炮炮彈彈在在 時時刻刻沿沿軸軸方方向向的的分分速速度度為為0(cos)xdxvv tdt cos0v 201(sin)2ydyvv tgtdt 0sinvgt t在在 時時刻刻炮炮彈彈的的速速度度大大小小為為22|xyvvv22 2002sinvv gtg t x 運運動動方方向

9、向即即速速度度的的方方向向( (與與 軸軸夾夾角角記記為為 ) )tan 練習練習解解33cos.sinxatyat 求求由由方方程程表表示示的的函函數(shù)數(shù)的的導導數(shù)數(shù)dtdxdtdydxdy )sin(cos3cossin322ttatta (2),0,axy 中中彈彈點點 在在 軸軸上上即即201sin0,2v tgt 002sin,vatg 解解此此方方程程得得中中彈彈點點 對對應(yīng)應(yīng)的的時時刻刻2000 0()cossin2 .vx tv tg射射程程tan . t *四、相關(guān)變化率四、相關(guān)變化率.,)()(變化率稱為相關(guān)變化率變化率稱為相關(guān)變化率這樣兩個相互依賴的這樣兩個相互依賴的之間也

10、存在一定關(guān)系之間也存在一定關(guān)系與與從而它們的變化率從而它們的變化率之間存在某種關(guān)系之間存在某種關(guān)系與與而變量而變量都是可導函數(shù)都是可導函數(shù)及及設(shè)設(shè)dtdydtdxyxtyytxx 相關(guān)變化率問題相關(guān)變化率問題: :已知其中一個變化率時如何求出另一個變化率已知其中一個變化率時如何求出另一個變化率?例例9 9解解500,140/.500,?一一汽汽球球從從離離開開觀觀察察員員米米處處離離地地面面鉛鉛直直上上升升 其其速速率率為為米米 分分當當氣氣球球高高度度為為米米時時觀觀察察員員視視線線的的仰仰角角增增加加率率是是多多少少,th 設(shè)設(shè)氣氣球球上上升升 分分鐘鐘后后 其其高高度度為為 米米 觀觀察

11、察員員視視線線的的仰仰角角為為則則500tanh t上上式式兩兩邊邊對對 求求導導得得dtdhdtd 5001sec2 140/,dhdt 米米 分分2sec,5002 米時米時當當h0.14(/)ddt 弧弧度度 分分仰角增加率仰角增加率 500米米500米米例例1010解解?,20,120,4000,/803水面每小時上升幾米水面每小時上升幾米米時米時問水深問水深的水槽的水槽頂角為頂角為米米形狀是長為形狀是長為水庫水庫秒的體流量流入水庫中秒的體流量流入水庫中米米河水以河水以則則水庫內(nèi)水量為水庫內(nèi)水量為水深為水深為設(shè)時刻設(shè)時刻),(),(tvtht234000)(htv 求導得求導得上式兩邊

12、對上式兩邊對tdtdhhdtdv 38000,/288003小時小時米米 dtdv小時小時米米/104. 0 dtdh水面上升之速率水面上升之速率0604000m,20米時米時當當 h五、小結(jié)五、小結(jié)隱函數(shù)求導法則隱函數(shù)求導法則: : 直接對方程兩邊求導直接對方程兩邊求導;對數(shù)求導法對數(shù)求導法: : 對方程兩邊取對數(shù)對方程兩邊取對數(shù),按隱函數(shù)的求按隱函數(shù)的求導法則求導導法則求導;參數(shù)方程求導參數(shù)方程求導: 實質(zhì)上是利用復(fù)合函數(shù)求導法則實質(zhì)上是利用復(fù)合函數(shù)求導法則;相關(guān)變化率相關(guān)變化率: : 通過函數(shù)關(guān)系確定兩個相互依賴的通過函數(shù)關(guān)系確定兩個相互依賴的變化率變化率; ; 解法解法: : 通過建立

13、兩者之間的關(guān)系通過建立兩者之間的關(guān)系, , 用鏈用鏈式求導法求解式求導法求解. .一、一、 填空題填空題: 1 1、 設(shè)設(shè)01552223 yxyyxx確定了確定了y是是x的函的函數(shù),則數(shù),則)1 , 1(dxdy=_=_, 22dxyd_._. 2 2、 曲線曲線733 xyyx在點(在點(1 1,2 2)處的切線方程)處的切線方程是是_._. 3 3、 曲線曲線 ttyttxsincos在在2 t處的法線方處的法線方程程_._. 4 4、 已知已知 teytexttsincos, ,則則dxdy=_=_;3 tdxdy=_.=_. 5 5、 設(shè)設(shè)yxexy , ,則則dxdy=_.=_.

14、練練 習習 題題七七 在中午十二點正甲船的在中午十二點正甲船的 6 6 公里公里/ /小時的速率小時的速率向東行駛, 乙船在甲船之北向東行駛, 乙船在甲船之北 1616 公里, 以公里, 以 8 8 公里公里/ /小時的速率向南行駛, 問下午一點正兩船相距小時的速率向南行駛, 問下午一點正兩船相距的速率為多少?的速率為多少? 八八 水注入深水注入深 8 8 米, 上頂直徑米, 上頂直徑 8 8 米的正圓錐形容米的正圓錐形容器中,其速率為每分鐘器中,其速率為每分鐘 4 4 立方米,當水深為立方米,當水深為 5 5米時,其表面上升的速率為多少?米時,其表面上升的速率為多少? 一、一、1 1、34, ,5210)(102084622 xxyyxyyyxxyx; 2 2、02311 yx 3 3、022 yx; 4 4、32,sincoscossin tttt; 5 5、yxyxexye . .二、二、1 1、32)2()3(yyey ; 2 2、- -)(tan)(csc232yxcyx ; 3 3、322)1(ln)1(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論