




已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
三大產(chǎn)業(yè)的發(fā)展與城鎮(zhèn)居民家庭消費(fèi)支出 通過(guò)對(duì)三大產(chǎn)業(yè)發(fā)展與城鎮(zhèn)居民家庭消費(fèi)支出增長(zhǎng)的關(guān)系進(jìn)行分析,從定量的角度探求三大產(chǎn)業(yè)分別對(duì)城鎮(zhèn)居民家庭消費(fèi)支出入的影響程度。關(guān)鍵詞:經(jīng)濟(jì)計(jì)量模型 第一產(chǎn)業(yè) 第二產(chǎn)業(yè)第三產(chǎn)業(yè) 可決系數(shù) 城鎮(zhèn)居民家庭消費(fèi)支出. 城鎮(zhèn)居民家庭消費(fèi)支出的增長(zhǎng)與國(guó)內(nèi)生產(chǎn)總值的增長(zhǎng)密切相關(guān)。然而國(guó)內(nèi)生產(chǎn)總值是由第一產(chǎn)業(yè)(農(nóng)業(yè))、第二產(chǎn)業(yè)(工業(yè)、建筑業(yè))、第三產(chǎn)業(yè)(服務(wù)性行業(yè))組成的,但是對(duì)城鎮(zhèn)居民家庭人均可支配收入的增長(zhǎng)影響各不相同。而對(duì)三者影響程度進(jìn)行數(shù)量分析,以期用函數(shù)關(guān)系精確表達(dá)三者各自的影響,就是我研究的主要內(nèi)容.一、數(shù)據(jù)收集Y 19963919.47 14015.39 33834.9623326.24 19974185.64 14441.89 37543.0026988.15 19984331.6 14817.63 39004.1930580.47 19994615.9 14770.03 41033.5833873.44 20004998 14944.72 45555.88387143.95 20015309 15781.27 49512.2944361.61 20026029.88 16537.02 53896.7749898.90 20036510.94 17381.72 62436.3156004.73 20047182.1 21412.73 73904.3164561.29 20057942.9 22420.00 87598.0974919.28 20068696.6 24040.00 103719.5487598.09 20079997.5 28627.00 125831.36111351.95 200811242.9 33702.00 149003.44131339.99 200912264.6 35226.00 157638.78148038.04 201013471.5 40533.60 187.383.21173595.98 201115160.9 47486.21 220412.81205205.02 201216674.3 52373.63 235161.99231934.48Y:城鎮(zhèn)居民家庭消費(fèi)支出(平均每人全年)(單位:元)X1:第一產(chǎn)業(yè)增加值 (單位:億元)X2:第二產(chǎn)業(yè)增加值 (單位:億元)X3: 第三產(chǎn)業(yè)增加值 (單位:億元)2、 模型建立我們可以得到Y(jié)與X1 X2 X3的散點(diǎn)圖由圖我們可以發(fā)現(xiàn)Y與X1 X2 X3都有比較明顯的線形關(guān)系,從而建立數(shù)學(xué)模型:三、模型估計(jì)Dependent Variable: YMethod: Least SquaresDate: 06/04/14 Time: 22:54Sample: 1996 2012Included observations: 17VariableCoefficientStd. Errort-StatisticProb.C2912.790593.60834.9069230.0003X1-0.0871830.084725-1.0290120.3222X20.0767610.0156944.8910770.0003X3-0.0002050.001025-0.2000830.8445R-squared0.994316Mean dependent var8384.337Adjusted R-squared0.993004S.D. dependent var4079.371S.E. of regression341.1963Akaike info criterion14.70512Sum squared resid1513394.Schwarz criterion14.90117Log likelihood-120.9935F-statistic758.0557Durbin-Watson stat1.165437Prob(F-statistic)0.000000所以我們得到以下的結(jié)果:Y=2912.7900.087183X1+0.076761X20.000205X3 t=(4.906923)(1.029012) (4.891077) (0.200083) =0.99431 =1.165437 F值=758.0557結(jié)果分析:從上面的運(yùn)行結(jié)果可以看出方程的擬合優(yōu)度,調(diào)整后的擬合優(yōu)度,說(shuō)明模型擬合效果較好。而且F值較大,表明方程從整體上有較好的解釋能力。在5%的顯著水平下,沒(méi)有通過(guò)t檢驗(yàn),說(shuō)明解釋變量對(duì)被解釋變量的影響不顯著;通過(guò)了t檢驗(yàn),說(shuō)明解釋變量對(duì)被解釋變量的影響顯著。四、統(tǒng)計(jì)意義檢驗(yàn)1、檢驗(yàn)可絕系數(shù),這說(shuō)明所建模型整體上對(duì)樣本數(shù)據(jù)擬合較好,即解釋變量“第一產(chǎn)業(yè)”“第二產(chǎn)業(yè)”“第三產(chǎn)業(yè)”對(duì)被解釋變量“城鎮(zhèn)居民家庭消費(fèi)支出”的絕大部分差異作了解釋。2、F檢驗(yàn)針對(duì),給定顯著性水平,在F分布表中查出自由度為的臨界值,由上述得到,應(yīng)拒絕原假設(shè),說(shuō)明回歸方程顯著,即解釋變量“第一產(chǎn)業(yè)”“第二產(chǎn)業(yè)”“第三產(chǎn)業(yè)”對(duì)被解釋變量“城鎮(zhèn)居民家庭消費(fèi)支出”有顯著影響。3、t檢驗(yàn)分別針對(duì),給定顯著性水平,查t分布表的自由度為的臨界值,與相比,其絕對(duì)值均大于,這說(shuō)明在顯著水平下,分別都應(yīng)拒絕原假設(shè),也就是說(shuō),當(dāng)在其他解釋變量不變的情況下,解釋變量“第一產(chǎn)業(yè)”“第二產(chǎn)業(yè)”“第三產(chǎn)業(yè)”對(duì)被解釋變量“城鎮(zhèn)居民家庭消費(fèi)支出”都有顯著的影響。2、檢驗(yàn)簡(jiǎn)單相關(guān)系數(shù)計(jì)算各解釋變量的相關(guān)系數(shù),選擇的數(shù)據(jù),得到相關(guān)系數(shù)矩陣如下表:X1X2X3X110.9967041492727320.496204861670713X20.99670414927273210.499458478481629X30.4962048616707130.4994584784816291由表中數(shù)據(jù)發(fā)現(xiàn)X1,X2之間存在高度相關(guān)性。 運(yùn)用逐步回歸法,對(duì)該模型進(jìn)行多重共線性的檢驗(yàn)和修正。第一步,分別引入,用最小二乘法對(duì)數(shù)據(jù)進(jìn)行回歸,Eviews運(yùn)行結(jié)果得出如下表:C168.2320.3250.9838480.55830.2272316.490.0610.99342915.74611.5886061.5050.0210.1944.3992.105可以看出,在第一步檢驗(yàn)中我們應(yīng)該保留的解釋變量為。第二步,在保留的基礎(chǔ)上,我們?cè)诜謩e引入,用最小二乘法對(duì)數(shù)據(jù)進(jìn)行回歸,Eviews運(yùn)行結(jié)果得出如下表:C2902.178-0.0870.0760.994299t值5.086-1.0625.0662323.7050.061-0.00010.993853t值14.77241.3060.863由上表我們可以看出:當(dāng)在引入的基礎(chǔ)上引入解釋變量時(shí),擬合優(yōu)度有所提高,而且的參數(shù)也通過(guò)了t檢驗(yàn);在引入的基礎(chǔ)上引入解釋變量時(shí),擬合優(yōu)度雖有提高,但的參數(shù)同樣的未能通過(guò)t檢驗(yàn)。所以在這一步檢驗(yàn)中我們應(yīng)該保留的解釋變量為。第三步,在保留的基礎(chǔ)上,我們?cè)僖耄次覀兗僭O(shè)的多元回歸方程,我們可以得出:當(dāng)在保留的基礎(chǔ)上,我們?cè)僖霑r(shí),擬合優(yōu)度有所提高,而且的參數(shù)也通過(guò)了t檢驗(yàn)。故,三個(gè)解釋變量都應(yīng)該保留。因此,最終的農(nóng)村居民人均消費(fèi)支出函數(shù)應(yīng)以為最優(yōu),擬合結(jié)果為:Y=2912.7900.087183X1+0.076761X20.000205X3 t=(4.906923)(1.029012) (4.891077) (0.200083) =0.99431 =1.165437 F值=758.05572、異方差檢驗(yàn)統(tǒng)一用懷特檢驗(yàn)法先對(duì)該模型做普通最小二乘法回歸,得到,然后作如下輔助回歸:用Eviews可以得出:F-statistic1.157229Probability0.398751Obs*R-squared6.966578Probability0.323949Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 06/05/14 Time: 15:15Sample: 1996 2012Included observations: 17VariableCoefficientStd. Errort-StatisticProb.C-464891.1427481.9-1.0875110.3023X194.0259759.179361.5888300.1432X12-0.0009290.000814-1.1416250.2802X2-26.8532414.43289-1.8605580.0924X225.85E-053.91E-051.4948750.1658X312.6023910.630911.1854480.2632X32-3.01E-052.50E-05-1.2025280.2569R-squared0.409799Mean dependent var89023.16Adjusted R-squared0.055678S.D. dependent var77437.41S.E. of regression75250.76Akaike info criterion25.58794Sum squared resid5.66E+10Schwarz criterion25.93103Log likelihood-210.4975F-statistic1.157229Durbin-Watson stat1.936478Prob(F-statistic)0.398751可以知道,從該輔助回歸得到可決系數(shù)與樣本容量n的乘積,即。查表我們可以知道。假設(shè):,由上面可以知道:,所以:接受,即該回歸模型不存在異方差性。3、序列相關(guān)性統(tǒng)一用LM檢驗(yàn)法含1階滯后殘差項(xiàng)的輔助回歸為: F-statistic2.849896Probability0.117175Obs*R-squared3.262530Probability0.070880Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 06/05/14 Time: 15:21Presample missing value lagged residuals set to zero.VariableCoefficientStd. Errort-StatisticProb.C-662.5850680.0899-0.9742610.3492X10.0934270.0966800.9663600.3529X2-0.0171640.017861-0.9610180.3555X30.0003470.0009800.3534430.7299RESID(-1)0.5662740.3354381.6881640.1172R-squared0.191914Mean dependent var-1.33E-12Adjusted R-squared-0.077449S.D. dependent var307.5502S.E. of regression319.2378Akaike info criterion14.60968Sum squared resid1222953.Schwarz criterion14.85474Log likelihood-119.1823F-statistic0.712474Durbin-Watson stat1.686501Prob(F-statistic)0.599080可以知道,從該輔助回歸得到可決系數(shù)與樣本容量n的乘積,即。查表我們可以知道,由此判斷原模型:,接受,即該回歸模型存在1階序列相關(guān)性含2階滯后殘差項(xiàng)的輔助回歸為:F-statistic1.317219Probability0.307012Obs*R-squared3.284729Probability0.193522Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 06/05/14 Time: 15:25Presample missing value lagged residuals set to zero.VariableCoefficientStd. Errort-StatisticProb.C-650.9518715.0912-0.9103060.3822X10.0913350.1021080.8944960.3902X2-0.0167070.018952-0.8815760.3969X30.0003120.0010550.2961230.7727RESID(-1)0.5871930.3835721.5308540.1540RESID(-2)-0.0523030.391983-0.1334330.8963R-squared0.193219Mean dependent var-1.33E-12Adjusted R-squared-0.173499S.D. dependent var307.5502S.E. of regression333.1635Akaike info criterion14.72571Sum squared resid1220977.Schwarz criterion15.01978Log likelihood-119.1685F-statistic0.526887Durbin-Watson stat1.709048Prob(F-statistic)0.751779可以知道,從該輔助回歸得到可決系數(shù)與樣本容量n的乘積,即。查表我們可以知道,由此判斷原模型:,接受,即該回歸模型不存在2階序列相關(guān)性。結(jié)合1階和2階滯后殘差項(xiàng)的輔助
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國(guó)2MM格法玻璃行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國(guó)過(guò)濾槽數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025木材采購(gòu)合同協(xié)議范本下載
- 2025至2030年中國(guó)組合螺釘旋具數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)碾米設(shè)備數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)電位器式位移傳感器數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)消防腰斧數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 新建輕質(zhì)磚墻體施工方案
- 齊河簡(jiǎn)易輕鋼房施工方案
- 梁平酒店鋁單板施工方案
- 系統(tǒng)安全運(yùn)維培訓(xùn)內(nèi)容
- 新時(shí)代社區(qū)治理存在的問(wèn)題及對(duì)策研究-以XX社區(qū)為例
- 《西方經(jīng)濟(jì)學(xué)》說(shuō)課
- 安標(biāo)受控件采購(gòu)管理制度
- 《針灸神奇作用》課件
- 美國(guó)醫(yī)療的社會(huì)變遷
- 亞低溫的治療與護(hù)理
- 2023全新混凝土罐車運(yùn)輸安全協(xié)議
- 防高墜自查自糾臺(tái)賬
- 市政工程消耗量定額 zya1-31-2015
- 汽車托管租賃合同
評(píng)論
0/150
提交評(píng)論