




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省邵東縣十中2023屆高考數(shù)學(xué)試題全真模擬密押卷(七)注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.2.已知函數(shù),則下列結(jié)論中正確的是①函數(shù)的最小正周期為;②函數(shù)的圖象是軸對(duì)稱圖形;③函數(shù)的極大值為;④函數(shù)的最小值為.A.①③ B.②④C.②③ D.②③④3.設(shè)函數(shù)若關(guān)于的方程有四個(gè)實(shí)數(shù)解,其中,則的取值范圍是()A. B. C. D.4.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.5.已知,且,則()A. B. C. D.6.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.7.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.38.已知,則的大小關(guān)系為A. B. C. D.9.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)10.()A. B. C. D.11.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.12.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)、滿足,且可行域表示的區(qū)域?yàn)槿切危瑒t實(shí)數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實(shí)數(shù)等于______.14.在三棱錐中,,,兩兩垂直且,點(diǎn)為的外接球上任意一點(diǎn),則的最大值為______.15.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個(gè)音階全用上,排成一個(gè)五個(gè)音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.16.已知是拋物線的焦點(diǎn),是上一點(diǎn),的延長線交軸于點(diǎn).若為的中點(diǎn),則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點(diǎn)、分別為,的中點(diǎn),且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.18.(12分)已知,均為正數(shù),且.證明:(1);(2).19.(12分)已知,函數(shù),(是自然對(duì)數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.21.(12分)在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測(cè)評(píng)結(jié)果,在畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:優(yōu)秀合格總計(jì)男生6女生18合計(jì)60已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡單隨機(jī)抽樣方式在全校學(xué)生中抽取少數(shù)一部分來分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02422.(10分)已知點(diǎn)、分別在軸、軸上運(yùn)動(dòng),,.(1)求點(diǎn)的軌跡的方程;(2)過點(diǎn)且斜率存在的直線與曲線交于、兩點(diǎn),,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對(duì)角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點(diǎn)睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.2.D【解析】
因?yàn)椋寓俨徽_;因?yàn)椋裕裕院瘮?shù)的圖象是軸對(duì)稱圖形,②正確;易知函數(shù)的最小正周期為,因?yàn)楹瘮?shù)的圖象關(guān)于直線對(duì)稱,所以只需研究函數(shù)在上的極大值與最小值即可.當(dāng)時(shí),,且,令,得,可知函數(shù)在處取得極大值為,③正確;因?yàn)椋裕院瘮?shù)的最小值為,④正確.故選D.3.B【解析】
畫出函數(shù)圖像,根據(jù)圖像知:,,,計(jì)算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.4.A【解析】
先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因?yàn)椋詅(x)的最小值為.故選:A【點(diǎn)睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運(yùn)算求解的能力,屬于中檔題.5.B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對(duì)已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.6.B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點(diǎn)問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.7.B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.8.D【解析】
分析:由題意結(jié)合對(duì)數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計(jì)算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項(xiàng).點(diǎn)睛:對(duì)于指數(shù)冪的大小的比較,我們通常都是運(yùn)用指數(shù)函數(shù)的單調(diào)性,但很多時(shí)候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進(jìn)行比較.這就必須掌握一些特殊方法.在進(jìn)行指數(shù)冪的大小比較時(shí),若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷.對(duì)于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確.9.C【解析】
根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【點(diǎn)睛】本題考查對(duì)題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.10.D【解析】
利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡,可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.11.D【解析】
,,得解.【詳解】,,,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.12.D【解析】
根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點(diǎn)時(shí),此時(shí),直線:,與:的交點(diǎn)為,該點(diǎn)也在直線:上,故,故答案為:;.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.14.【解析】
先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運(yùn)算,將問題轉(zhuǎn)化為求球體表面一點(diǎn)到外心距離最大的問題,即可求得結(jié)果.【詳解】因?yàn)閮蓛纱怪鼻遥嗜忮F的外接球就是對(duì)應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對(duì)角線的中點(diǎn),如下圖所示:容易知外接球半徑為.設(shè)線段的中點(diǎn)為,故可得,故當(dāng)取得最大值時(shí),取得最大值.而當(dāng)在同一個(gè)大圓上,且,點(diǎn)與線段在球心的異側(cè)時(shí),取得最大值,如圖所示:此時(shí),故答案為:.【點(diǎn)睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運(yùn)算以及數(shù)量積運(yùn)算,屬綜合性困難題.15.1【解析】
按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個(gè)或第四個(gè)位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時(shí)有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個(gè)或第四個(gè)位置上,則有種;綜上,共有種.故答案為:1.【點(diǎn)睛】本題主要考查利用排列知識(shí)解決實(shí)際問題,涉及分步計(jì)數(shù)乘法原理和分類計(jì)數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運(yùn)用知識(shí)的能力,屬于基礎(chǔ)題.16.【解析】
由題意可得,又由于為的中點(diǎn),且點(diǎn)在軸上,所以可得點(diǎn)的橫坐標(biāo),代入拋物線方程中可求點(diǎn)的縱坐標(biāo),從而可求出點(diǎn)的坐標(biāo),再利用兩點(diǎn)間的距離公式可求得結(jié)果.【詳解】解:因?yàn)槭菕佄锞€的焦點(diǎn),所以,設(shè)點(diǎn)的坐標(biāo)為,因?yàn)闉榈闹悬c(diǎn),而點(diǎn)的橫坐標(biāo)為0,所以,所以,解得,所以點(diǎn)的坐標(biāo)為所以,故答案為:【點(diǎn)睛】此題考查拋物線的性質(zhì),中點(diǎn)坐標(biāo)公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1)∵,點(diǎn)為的中點(diǎn),∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點(diǎn),∴,∴,又平面,平面,,∴平面.(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,∵,∴,,,,∴,,,設(shè)平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法求線面角,屬于中檔題.18.(1)見解析(2)見解析【解析】
(1)由進(jìn)行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴.(2).當(dāng)且僅當(dāng)時(shí)取等號(hào).【點(diǎn)睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.19.(1)當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)【解析】試題分析:(1),分,討論,當(dāng)時(shí),對(duì),,當(dāng)時(shí),解得,在上是減函數(shù),在上是增函數(shù)。所以,當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內(nèi)有解。設(shè),所以,設(shè),則,且是增函數(shù),所以。所以分和k>1討論。試題解析:(Ⅰ)因?yàn)椋裕?dāng)時(shí),對(duì),,所以在是減函數(shù),此時(shí)函數(shù)不存在極值,所以函數(shù)沒有極值點(diǎn);當(dāng)時(shí),,令,解得,若,則,所以在上是減函數(shù),若,則,所以在上是增函數(shù),當(dāng)時(shí),取得極小值為,函數(shù)有且僅有一個(gè)極小值點(diǎn),所以當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(Ⅱ)命題“,”是假命題,則“,”是真命題,即不等式在區(qū)間內(nèi)有解.若,則設(shè),所以,設(shè),則,且是增函數(shù),所以當(dāng)時(shí),,所以在上是增函數(shù),,即,所以在上是增函數(shù),所以,即在上恒成立.當(dāng)時(shí),因?yàn)樵谑窃龊瘮?shù),因?yàn)椋栽谏洗嬖谖ㄒ涣泓c(diǎn),當(dāng)時(shí),,在上單調(diào)遞減,從而,即,所以在上單調(diào)遞減,所以當(dāng)時(shí),,即.所以不等式在區(qū)間內(nèi)有解綜上所述,實(shí)數(shù)的取值范圍為.20.(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調(diào)性問題轉(zhuǎn)化為證明,即證,令,根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(Ⅰ)的定義域?yàn)榍伊睿茫涣睿迷谏蠁握{(diào)遞增,在上單調(diào)遞減函數(shù)的極大值為,無極小值(Ⅱ),,即由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【點(diǎn)睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來農(nóng)作物繁育員職業(yè)技能測(cè)試試題及答案
- 突破模具設(shè)計(jì)師考試的思維定勢(shì)與試題答案
- 建立良好習(xí)慣2024年體育經(jīng)紀(jì)人職業(yè)試題及答案
- 2024年農(nóng)業(yè)植保員考試細(xì)節(jié)解讀與準(zhǔn)備試題及答案
- 種子繁育員職業(yè)資格考試解題策略試題
- 無人機(jī)應(yīng)用案例試題及答案討論
- 提升裁判能力試題及答案詳解
- 成功通過2024年籃球裁判員等級(jí)考試的秘訣 試題及答案
- 裁判員如何應(yīng)對(duì)場上突發(fā)情況的應(yīng)急措施試題及答案
- 2024農(nóng)業(yè)植保員新政策試題及答案
- 2024年新疆中考地理真題卷及答案
- 部編版二年級(jí)下冊(cè)語文課文3我是一只小蟲子同步練習(xí)C卷
- 小升初奧數(shù)不同題型100道及答案(完整版)
- 第16課 經(jīng)濟(jì)危機(jī)與資本主義國家的應(yīng)對(duì)(課件)-【中職專用】《世界歷史》(同課異構(gòu))(高教版2023基礎(chǔ)模塊)
- GB/T 4008-2024錳硅合金
- 中國肺血栓栓塞診治與預(yù)防指南解讀專家講座
- 《鴻門宴》公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì) 統(tǒng)編版高中語文必修下冊(cè)
- DZ∕T 0202-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 鋁土礦(正式版)
- 二年級(jí)三位數(shù)加減法豎式計(jì)算
- 安全生產(chǎn)投入臺(tái)賬(模板)
- 清華大學(xué)領(lǐng)軍計(jì)劃語文試題強(qiáng)基計(jì)劃
評(píng)論
0/150
提交評(píng)論