




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第=page11頁,共=sectionpages11頁2025年陜西省西安市長安區高考數學三模試卷一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項中,只有一項是符合題目要求的。1.已知集合A={(x,y)|x,y∈Z,且xy=4},B={(x,y)|x≤y},則A∩B的子集的個數為(
)A.3 B.4 C.8 D.162.在復平面內,復數z1對應的點與復數z2=3+i2?i對應的點關于實軸對稱,則A.1+i B.?1?i C.?1+i D.1?i3.如圖,向量OA=(4,?1),OB=(2,4),若A1,A2,A3,A4為線段AB的5A.(3,32)
B.(6,3)
C.(12,6)4.某學生的QQ密碼是由前兩位是大寫字母,第三位是小寫字母,后六位是數字共九個符號組成.該生在登錄QQ時,忘記了密碼的最后一位數字,如果該生記住密碼的最后一位是奇數,則不超過兩次就輸對密碼的概率為(
)A.110 B.15 C.255.定義“等方差數列”:如果一個數列的各項都是實數,且從第二項起,每一項與它前一項的平方差是相同的常數,那么這個數列就叫做等方差數列,這個常數叫做該數列的公方差.已知各項均為正數的數列{an}是等方差數列,且公方差為3,a1=1,則數列{1A.3 B.6 C.2 D.46.已知曲線C1:y=asin(πx+π4),C2:y=acos(πx+π4),其中a>0,點A,B,C是曲線C1A.33 B.12 C.7.已知某圓錐的軸截面是頂角為α的等腰三角形,側面展開圖是圓心角為β的扇形,則當β?α的值最大時,β=(
)A.1 B.2 C.π2?18.函數f(x)的定義域為R,f(3x?1)為是奇函數,且f(x?1)的圖像關于x=1對稱.若曲線f(x)在x=1處的切線斜率為2,則曲線f(x)在x=2023處的切線方程為(
)A.y=?2x+4046 B.y=2x+4046 C.y=2x?4046 D.y=?2x?4046二、多選題:本題共3小題,共18分。在每小題給出的選項中,有多項符合題目要求。9.若(x+1)5=aA.a0=1
B.數據a0,a1,a2,a3,a4,a5的30%分位數為5
C.數據a0+1,a1,a2,a3,a410.已知曲線E:x4?y4A.E不是封閉圖形 B.E有4條對稱軸
C.E與坐標軸有4個交點 D.E與直線y=12025x11.隨著時代與科技的發展,信號處理以各種方式被廣泛應用于醫學、聲學、密碼學、計算機科學、量子力學等領域,而信號處理背后的“功臣”就是正弦型函數.已知某種信號的波形可以利用函數f(x)=sin|2x|?|cos2x|的圖象近似模擬,則(
)A.f(x)是非奇非偶函數
B.f(x)的值域為[?2,1]
C.當t∈(?2,?1)時,關于x的方程f(x)=t在區間[0,π]上所有不等實根的和為3π2
D.三、填空題:本題共3小題,每小題5分,共15分。12.已知向量a,b滿足|a|=2,b=(3,0),則向量a在向量投影向量的坐標為(12,0),則|13.已知拋物線C:y2=4x,其中AC,BD是過拋物線焦點F垂直的弦,直線AC的傾斜角為α,當α=45°時,如圖所示的“蝴蝶形圖案(陰影區域)”的面積為______.14.小明參加一項籃球投籃測試,測試規則如下:若出現連續兩次投籃命中,則通過測試;若出現連續兩次投籃不中,則不通過測試.已知小明每次投籃命中的概率均為23,則小明通過測試的概率為______.四、解答題:本題共5小題,共77分。解答應寫出文字說明,證明過程或演算步驟。15.(本小題13分)
已知a,b,c分別為△ABC三個內角A,B,C的對邊,向量m=(a,b+c),n=(3sinC+cosC,1),m?n=2(b+c).
(1)求A;
(2)若16.(本小題15分)
用數學的眼光看世界就能發現很多數學之“美”.現代建筑講究線條感,曲線之美讓人稱奇,衡量曲線彎曲程度的重要指標是曲率,曲線的曲率定義如下:若f′(x)是f(x)的導函數,f″(x)是f′(x)的導函數.則曲線y=f(x)在點(x,f(x))處的曲率K=|f″(x)|(1+[f′(x)]2)32.
(1)若曲線f(x)=lnx+x與g(x)=x在(1,1)處的曲率分別為K1,K2,比較17.(本小題15分)
如圖,在四棱錐P?ABCD中,PD⊥AB,PB=PD,底面ABCD是邊長為3的菱形,∠ABC=2π3.
(1)證明:平面PAC⊥平面ABCD;
(2)若平面PAB與平面ABCD所成角的正切值為2,點Q滿足PC=4PQ,求直線CP18.(本小題17分)
對于二次曲線Γ:λx2+μy2=1,我們有:若Q(x′,y′)是曲線Γ上的一點,則過點Q與曲線Γ相切的直線方程為λx′x+μy′y=1.已知橢圓C1:x2a2+y2b2=1(a>b>0),a2=13b2,動圓C2:x2+y2=r2(b<r<a),點P(x0,y0)是C1與C2在第一象限的交點.
(1)求橢圓C1的離心率e;
(2)過點P19.(本小題17分)
定義1:若數列{an}滿足①a1=1,②?n≥2,an(an?1)=0,則稱{an}為“兩點數列”;定義2:對于給定的數列{an},若數列{bn}滿足①b1=1,②bn+1=|an+1?2an|?bn,則稱{bn}為{an}的“生成數列”.已知{a參考答案1.D
2.D
3.C
4.C
5.A
6.D
7.D
8.C
9.ACD
10.ACD
11.BD
12.1013.8
14.162115.解:(1)根據m=(a,b+c),n=(3sinC+cosC,1),可得m?n=a(3sinC+cosC)+b+c,
結合題意m?n=2(b+c),化簡得3asinC+acosC=b+c,
根據正弦定理得3sinAsinC+sinAcosC=sinB+sinC,
因為△ABC中,sinB=sin(A+C)=sinAcosC+cosAsinC,
所以3sinAsinC+sinAcosC=sinAcosC+cosAsinC+sinC,整理得3sinAsinC=sinC(cosA+1).
結合△ABC中,sinC≠0,化簡得3sinA?cosA=1,即2sin(A?π6)=1,
在△ABC中,A?π6∈(?π6,5π616.解:(1)f(x)=lnx+x,f′(x)=1x+1,f″(x)=?1x2,
∴f′(1)=2,f″(1)=?1,
∴K1=|?1|(1+22)32=1532;
g(x)=x,g′(x)=12x,g″(x)=?14xx,
∴g′(1)=12,g″(1)=?14.
∴K2=14(1+14)32=25317.解:(1)證明:連接BD交AC于點O,連接PO,
因為ABCD是菱形,所以BD⊥AC,
又因為O為BD的中點,PD=PB,所以PO⊥BD,
又AC,PO?面APC,且AC∩PO=O,所以BD⊥平面APC,
又BD?平面ABCD,所以平面PAC⊥平面ABCD;
(2)過P作PH⊥AC交AC于點H,面APC⊥面ABCD,PH⊥AC,
面APC∩面ABCD=AC,PH?面APC,所以PH⊥面ABCD,
因為AB⊥PD,AB⊥PH,PH,PD?面PHD,PH∩PD=P,所以AB⊥面PHD,
又DH?面PHD,所以AB⊥DH,
所以H為DH,AO的交點,△ABD為等邊三角形,
所以H為△ABD的重心,
設DH與AB交點為M,連接PM,則∠PMH為二面角P?AB?D的平面角,
因為OH=12,MH=12,在△PMH中tan∠PMH=PHMH=2,解得PH=1,
因為PC=4PQ,HC=4HO,所以OQ//PH,所以OQ⊥平面ABCD,
以O為原點,OB,OC,OQ所在直線為x,y,z軸建立如圖坐標系,
則A(0,?32,0),B(32,0,0),C(0,32,0),P(0,?12,1),Q(0,0,34),
AB=(32,32,0),AQ=(0,32,18.解:(1)因為a2=13b2,
所以e=a2?b2a=12b13b=23913,
則橢圓C1的離心率e=23913;
(2)易知C1:x213+y2=b2,
因為點P(x0,y0)是C1與C2在第一象限的交點,
所以x02+y02=r2113x02+y02=b2,
解得x02=1312(r2?b2),
因為x0>0,
所以x0=396?r2?b2,b<r<13b,
圓C2:x2+y2=r2在P(x0,y0)處切線19.解:(1)依題意an=1,n為奇數,0,n為偶數,
故bn+1=|an+1?2an|?bn=2bn,n為奇數,bn,n為偶數,
因為b1=1,所以b2=2b1=2,
當n為奇數時,bn+2=bn+1=2bn,
當n為偶數時,bn+2=2bn+1=2bn,即{bn}的奇數項,偶數項分別成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 制勝游泳救生員職業資格考試的試題及答案攻略
- 學術與實務相結合2024年體育經紀人試題及答案
- 試題及答案:模具設計師考試的關鍵
- 2024年農作物繁育員重要考試注意事項試題及答案
- 2024模具設計師資格考試細節解讀試題及答案
- 2024年體育經紀人職業資格考試難點與試題及答案
- 2025年中國凌型麻印花布市場調查研究報告
- 2025年中國全自動旋轉蒸發儀市場調查研究報告
- 植保員的日常工作與挑戰試題及答案
- 2025年中國三格吃籃市場調查研究報告
- 專家授課合同協議
- 護理臨床帶教老師培訓
- 艾滋病宣傳員知識培訓
- 防化的相關知識
- 2024-2025學年廣東省深圳市南山區四年級(上)期末數學試卷
- 湖北省武漢市2025屆高中畢業生四月調研考試地理試題及答案(武漢四調)
- 青少年科技創新知識講座
- 2025山東司法警官職業學院教師招聘考試試題及答案
- 風電項目合作框架協議
- 植物地理學課件 苔原(最終版)學習資料
- 吉林煙草工業有限責任公司招聘真題2024
評論
0/150
提交評論