




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ACourseinFluidMechanics
withVectorFieldTheory
by
DennisC.Prieve
DepartmentofChemicalEngineering
CarnegieMellonUniversity
Pittsburgh,PA15213
AnelectronicversionofthisbookinAdobePDF?formatwasmadeavailableto
studentsof()6-703,DepartmentofChemicalEngineering,
CarnegieMellonUniversity,Fall,2000.
Copyright?2(XX)byDennisC.Prieve
06-7031Fall,2000
TableofContents
ALGEBRAOFVECTORSANDTENSORS1
DefinitionofDyadicProduct2
DECOMPOSITIONINTOSCALARCOMPONENTS3
GeometricMeaningoftheGradient6
ApplicationsofGradient7
CURVILINEARCOORDINATES7
CylindricalCoordinates7
SphericalCoordinates8
DIFFERENTIATIONOFVECTORSW.R.T.SCALARS9
VFCTORFlFLDSI;
FluidVelocityasaVectorFieldII
PARTIAL&MATERIALDERIVATIVES12
CALCULUSOFVECTORFIELDS14
DIVERGENCE,CURL,ANDGRADIENT16
PhysicalInterpretationofDivergence16
Calculationo/V-vinR.C.C.S16
Evaluationo廣.v,VxvandVvinCurvilinearCoordinates19
PhysicalInterpretationofCurl20
VECTORFIELDTHEORY22
CorollariesoftheDivergenceTheorem24
TheContinuityEquation24
ReynoldsTransportTheorem26
VelocityCirculation:PhysicalMeaning28
DERIVABLEFROMASCALARPOTENTIAL29
TRANSPOSEOFATENSOR,IDENTITYTENSOR31
DIVERGENCEOFATENSOR32
INTRODUCTIONTOCONTINUUMMECHANICS*34
CONTINUUMHYPOTHESIS34
HYDROSTATICEQUILIBRIUM37
FLOWOFIDEALFLUIDS37
IRROTATIONALFLOWOFANINCOMPRESSIBLEFLUID42
PotentialFlowAroundaSphere45
Copyright?2000byDennisC.Prieve
06-7032Fall,2000
Two-DFLOWS54
AXISYMMETRICFLOW(CYLINDRICAL)55
STREAMLINES,PATHLINESANDSTREAKLINES57
PHYSICALMEANINGOFSTREAMFUNCTION58
VISCOUSFLUIDS62
TENSORIALNATUREOFSURFACEFORCES62
GENERALIZATIONOFEULER'SEQUATION66
RESPONSEOFELASTICSOLIDSTOUNIAXIALSTRESS70
RESPONSEOFELASTICSOLIDSTOPURESHEAR72
RESPONSEOFAVISCOUSFLUIDTOPURESHEAR75
GENERALIZEDNEWTON'SLAWOFVISCOSITY76
EXACTSOLUTIONSOFN-SEQUATIONS80
FlowinLongStraightConduitofUniformCrossSection81
FlowofThinFilmDownInclinedPlane84
PROBLEMSWITHNON-ZEROINERTIA89
CREEPINGFLOWAPPROXIMATION91
CREEPINGFLOWAROUNDASPHERE(Re->0)96
Scaling97
VelocityProfile99
DisplacementofDistantStreamlines101
CORRECTINGFORINERTIALTERMS106
FLOWAROUNDCYLINDERASRE—>0109
BOUNDARY-LAYERAPPROXIMATION110
MATHEMATICALNATUREOFBOUNDARYLAYERS111
MATCHED-ASYMPTOTICEXPANSIONS115
MAE'sAPPLIEDTO2-DFLOWAROUNDCYLINDER120
InnerExpansion120
BoundaryLayerThickness120
PRANDTUSB.L.EQUATIONSFOR2-DFLOWS120
ALTERNATEMETHOD:PRANDTL*SSCALINGTHEORY120
TimeOut:FlowNexttoSuddenlyAcceleratedPlate120
TimeIn:BoundaryLayeronFlatPlate120
Copyright?2000byDennisC.Prieve
06-7033Fall,2000
SOLUTIONFORASYMMETRICCYLINDER120
DragCoefficientandBehaviorintheWakeoftheCylinder120
THELUBRICATIONAPPROXIMATION157
TRANSLATIONOFACYLINDERALONGAPLATE163
TURBULENCE176
TURBULENTFLOWINPIPES177
TIME-SMOOTHINGOFCONTINUITYEQUATION180
TIME-SMOOTHINGOFTHENAVIER-STOKESEQUATION180
ANALYSISOFTURBULENTFLOWINPIPES182
PRANDTL'SMIXINGLENGTHTHEORY184
PRANDTL'S“UNIVERSAL“VELOCITYPROFILE187
PRANDTfSUNIVERSALLAWOFFRICTION189
ELECTROHYDRODYNANUCS120
GOUY-CHAPMANMODELOFDOUBLELAYER120
ELECTROSTATICBODYFORCES120
ELECTROKINETICPHENOMENA120
SMOLUCHOWSKI'SANALYSIS(CA.1918)120
ELECTRO-OSMOSISINCYLINDRICALPORES120
SURFACETENSION120
BOUNDARYCONDITIONSFORFLUIDFLOW120
INDEX211
Copyright?2000byDennisC.Prieve
06-7031Fall,2000
AlgebraofVectorsandTensors
Whereasheatandmassarescalars,fluidmechanicsconcernstransportofmomentum,whichisa
vector.Heatandmassfluxesarevectors,momentumfluxisatensor.Consequently,themathematical
descriptionoffluidflowtendstobemoreabstractandsubtlethanforheatandmasstransfer.Inan
efforttomakethestudentmorecomfortablewiththemathematics,wewillstartwithareviewofthe
algebraofvectorsandanintroductiontotensorsanddyads.Abriefreviewofvectoradditionand
multiplicationcanbefoundinGreenberg,*pages132-139.
Scalar-aquantityhavingmagnitudebutnodirection(e.g.temperature,density)
Vector-(a.k.a.1stranktensor)aquantityhavingmagnitudeanddirection(e.g.velocity,force,
momentum)
(2ndrank)Tensor-aquantityhavingmagnitudeandtwodirections(e.g.momentumflux,
stress)
VECTORMULTIPLICATION
Giventwoarbitraryvectorsaandb,therearethreetypesofvectorproducts
aredefined:
NotationResultDefinition
DotProducta-bscalarabcos0
CrossProductaxbvectorab|sinGIn
where0isaninteriorangle(0<0<TT)andnisaunitvectorwhichisnormaltobothaandb.The
senseofnisdeterminedfromthe"right-hand-rule"?
DyadicProductabtensor
*Greenberg,M.D.,FoundationsOfAppliedMathematics,Prentice-Hall,1978.
?The^right-handrule”:withthefingersoftherighthandinitiallypointinginthedirectionofthefirst
vector,rotatethefingerstopointinthedirectionofthesecondvector;thethumbthenpointsinthe
directionwiththecorrectsense.Ofcourse,thethumbshouldhavebeennormaltotheplanecontaining
bothvectorsduringtherotation.Inthefigureaboveshowingaandb,axbisavectorpointingintothe
page,whilebxapointsoutofthepage.
Copyright?2000byDennisC.Prieve
06-7032Fall,2000
Intheabovedefinitions,wedenotethemagnitude(orlength)ofvectorabythescalara.Boldfacewill
beusedtodenotevectorsanditalicswillbeusedtodenotescalars.Second-ranktensorswillbe
denotedwithdouble-underlinedboldface;e.g.tensorJ.
DefinitionofDyadicProduct
Reference:AppendixBfromHappel&Brenner.*Thewordudyad^^comesfromGreek:“dy”
meanstwowhile“ad”meansadjacent.Thusthenamedyadreferstothewayinwhichthisproductis
denoted:thetwovectorsarewrittenadjacenttooneanotherwithnospaceorotheroperatorin
between.
ThereisnogeometricalpicturethatIcandrawwhichwillexplainwhatadyadicproductis.It*sbest
tothinkofthedyadicproductasapurelymathematicalabstractionhavingsomeveryusefulproperties:
DyadicProductab-thatmathematicalentitywhichsatisfiesthefollowingproperties(wherea,
b,v,andwareanyfourvectors):
1.ab-v=a(b?v)[whichhasthedirectionofa;notethatba-v=b(a?v)whichhasthedirectionof
b.Thusab工basincetheydon'tproducethesameresultonpost-dottingwithv.]
2.v-ab=(v-a)b[thusv?abab-v]
3.abxv=a(bxv)whichisanotherdyad
4.vxab=(vxa)b
5.ab:vw=(a?w)(b-v)whichissometimesknownastheinner-outerproductorthedouble-dot
product:
6.a(v+w)=av+aw(distributiveforaddition)
7.(v+w)a=va+wa
8.(s+/)ab=sab+rab(distributiveforscalarmultiplication-alsodistributivefordotandcross
product)
9.sab=(sa)b=a(sb)
“Happel,J.,&H.Brenner,LowReynoldsNumberHydrodynamics.Noordhoff,1973.
“Brennerdefinesthisas(a?v)(b?w).Althoughthetwodefinitionsarenotequivalent,eithercanbe
used-aslongasyouareconsistent.Inthesenotes,wewilladoptthedefinitionaboveandignore
Brennefsdefinition.
Copyright?2000byDennisC.Prieve
06-7033Fall,2000
DECOMPOSITIONINTOSCALARCOMPONENTS
Threevectors(saye],e?,and03)aresaidtobelinearlyindependentifnonecanbeexpressed
asalinearcombinationoftheothertwo(e.g.i,j,andk).GivensuchasetofthreeLIvectors,any
vector(belongingtoE3)canbeexpressedasalinearcombinationofthisbasis:
v=vlel+v2e2+v3e3
wherethev,arecalledthescalarcomponentsofv.Usually,forconvenience,wechoose
orthonormalvectorsasthebasis:
lifi=j
3號=而=
OifiWj
althoughthisisnotnecessary.即iscalledtheKroneckerdelta.Justasthefamiliardotandcross
productscanwrittenintermsofthescalarcomponents,socanthedyadicproduct:
VW=(v1e222+^3。3)(卬遇1+卬2。2+叩3£3)
=(vje1)(w1eI)+(V)ej)(w2e2)+...
=?[卬遇匹]+1/]卬20遇2+…(nineterms)
wherethee’e,areninedistinctunitdyads.Wehaveappliedthedefinitionofdyadicproductto
performthesetwosteps:inparticularitems6,7and9inthelistabove.
Moregenerallyanynthranktensor(inE^)canbeexpressedasalinearcombinationofthe券unitn-
ads.Forexample,ifn=2,3〃=9andann-adisadyad.Thusageneralsecond-ranktensorcanbe
decomposedasalinearcombinationofthe9unitdyads:
1=7,llelel+7,12ele2+-='=1,3?廣1,37瀘
tensors
Althoughadyad(e.g.vw)isanexampleofasecond-ranktensor,notall'\
2ndranktensorsIcanbeexpressedasadyadicproductoftwovectors,1/山-^\I
Toseewhy,notethatageneralsecond-ranktensorhasninescalar\\//
componentswhichneednotberelatedtooneanotherinanyway.By\—
contrast,the9scalarcomponentsofdyadicproductaboveinvolveonlysix
distinctscalars(the3componentsofvplusthe3componentsofw).
Afterawhileyougettiredofwritingthesummationsignsandlimits.Soan
abbreviationwasadoptedwherebyrepeatedappearanceofanindeximpliessummationoverthethree
allowablevaluesofthatindex:
工=丁恒
Copyright?2000byDennisC.Prieve
06-7034Fall,2000
ThisissometimescalledtheCartesian(implied)summationconvention.
SCALARFIELDS
SupposeIhavesomescalarfunctionofposition(x,y,z)whichiscontinuouslydifferentiable,that
is
anddf/dx,df/dy,anddf/dzexistandarecontinuousthroughoutsome3-Dregioninspace.This
functioniscalledascalarfield.Nowconsider/atasecondpointwhichisdifferentiallyclosetothe
first.Thedifferenceinfbetweenthesetwopointsis
calledthetotaldifferentialof/:
f(x+dxfy+dyfz+dz)-/(x,y,z)=df
Foranycontinuousfunction/(x,y,z),dfislinearlyrelated
tothepositiondisplacements,dx,dyandThat
linearrelationisgivenbytheChainRuleof
differentiation:
Insteadofdefiningpositionusingaparticularcoordinate
system,wecouldalsodefinepositionusingapositionvectorr:
r=xi++zk
Thescalarfieldcanbeexpressedasafunctionofavectorargument,representingposition,insteadofa
setofthreescalars:
/=/(r)
Consideranarbitrarydisplacementawayfromthepointr,whichwedenoteasdrtoemphasizethatthe
magnitude|dr\ofthisdisplacementissufficiendysmallthatf(r)canbelinearizedasafunctionof
positionaroundr.Thenthetotaldifferentialcanbewrittenas
Copyright?2000byDennisC.Prieve
06-7035Fall,2000
df=/(r+Jr)-/(r)
GRADIENTOFASCALAR
Wearenowisapositiontodefineanimportantvectorassociated
withthisscalarfield.Thegradient(denotedasV/)isdefined
suchthatthedotproductofitandadifferentialdisplacement
vectorgivesthetotaldifferential:
dfmdrZf
EXAMPLE:ObtainanexplicitformulaforcalculatingthegradientinCartesian*coordinates.
Solution'.r=xi++zk
r+c/r=(x+dx)i+(y+dy)j+(z+dz)k
subtracting:dr=(dx)i+(dy)j+?z)k
v=(w+(w+(w
dr?Vf=[(dx)i+..J?KW)/+???]
df=(Nf)xdx+(yf)ydy+⑴
UsingtheChainrule:df=(df/dx)dx+(df/dy)dy+(df/dz)dzQ)
Accordingtothedefinitionofthegradient,(1)and(2)areidentical.Equatingthemandcollectingterms:
+KV/y(型力)"+=o
Thinkofdx,dy,anddzasthreeindependentvariableswhichcanassumeaninfinitenumberofvalues,
eventhoughtheymustremainsmall.Theequalityabovemustholdforallvaluesofdx,dy,anddz.The
onlywaythiscanbetrueisifeachindividualtermseparatelyvanishes:**
*NamedafterFrenchphilosopherandmathematicianReneDescartes(1596-1650),pronounced"day-
cart",whofirstsuggestedplotting/(x)onrectangularcoordinates
**Foranyparticularchoiceofdx,dy,anddz,wemightobtainzerobycancellationofpositiveand
negativeterms.Howeverasmallchangeinoneofthethreewithoutchangingtheothertwowouldcause
thesumtobenonzero.Toensureazero-sumforallchoices,wemustmakeeachtermvanish
independently.
Copyright?2000byDennisC.Prieve
06-7036Fall,2000
So(Y/)x=df/dx,(yf)y=^f/dy,and(V/)2=df/dz,
leaving如i+蛆j+/k
dx3ydz
Otherwaystodenotethegradientinclude:
V/'=gradf=df/dr
GeometricMeaningoftheGradient
1)direction:V/(r)isnormaltothe尸constsurfacepassingthroughthepointrinthedirectionof
increasing/.V/,alsopointsinthedirectionofsteepestascentoff.
2)magnitude:|V/]istherateofchangeoffwith
distancealongthisdirection
Whatdowemeanbyan7=constsurface1*?Consideran
example.
Example'.Supposethesteadystatetemperatureprofile
insomeheatconductionproblemisgivenby:
T(x,y,Z)=H+,2+
PerhapsweareinterestedinNTatthepoint(3,3,3)
where7=27.NTisnormaltotheT=constsurface:
+y2+/=27
whichisasphereofradiusV27.*
Proofof1),Let'susethedefinitiontoshowthatthesegeometricmeaningsarecorrect.
df=dr-Vf
*Averticalbarintheleftmargindenotesmaterialwhich(intheinterestoftime)willbeomittedfromthe
lecture.
Copyright?2000byDennisC.Prieve
06-7037Fall,2000
Consideranarbitraryf.Aportionofthe六constsurface
containingthepointrisshowninthefigureatright.Choosea
drwhichliesentirelyon/^=const.Inotherwords,thesurface
containsbothrandr+dr,so
{r)=/(r+dr)
anddf=f(r+dr)-f(r)=0
Substitutingthisintothedefinitionofgradient:
df=0=dr-Vf=|dr||V7|
SinceIdrIandIV/|areingeneralnotzero,weareforced
totheconclusionthatcos0=Oor0=90°.ThismeansthatV/isnormaltodrwhichliesinthesurface.
2)canbeprovedinasimilarmanner:choosedrtobeparalleltoV/.DoesNfpointtowardhigheror
lowervaluesof/?
ApplicationsofGradient
?findavectorpointinginthedirectionofsteepestascentofsomescalarfield
?determineanormaltosomesurface(neededtoapplyb.c/s1汰en-v=0foraboundarywhichis
impermeable)
?determinetherateofchangealongsomearbitrarydirection:ifnisaunitvectorpointingalongsome
path,then
nF嗎
OS
istherateofchangeoffwithdistance(s)alongthispathgivenbyn.df/dsiscalledthedirected
derivativeoff.
CURVILINEARCOORDINATES
Inprinciple,allproblemsinfluidmechanicsandtransportcouldbesolvedusingCartesian
coordinates.Often,however,wecantakeadvantageofsymmetryinaproblembyusinganother
coordinatesystem.Thisadvantagetakestheformofareductioninthenumberofindependentvariables
(e.g.PDEbecomesODE).Afamiliarexampleofanon-Cartesiancoordinatesystemis:
Copyright?2000byDennisC.Prieve
06-7038Fall,2000
CylindricalCoordinates
r=(]2+y2)l/2x=rcOs0
0=tan-1(y/x)y-rsin0
z=zz=z
Vectorsaredecomposeddifferently.Insteadof
inR.C.C.S.:v=vxi+
incylindricalcoordinates,wewrite
incyl.coords.:v=vrer+v0e0+
whereer,eg,ande.arenewunitvectorspointingther,0andzdirections.Wealsohaveadifferent
setofnineunitdyadsfordecomposingtensors:
erer,ereg,erez,ege,.,etc.
LiketheCartesianunitvectors,theunitvectorsincylindricalcoordinatesformanorthonormalsetof
basisvectorsforE?.UnlikeCartesianunitvectors,theorientationoferande°dependonposition.In
otherwords:
er=er(0)
%=。(。)
Copyright?2000byDennisC.Prieve
06-7039Fall,2000
SphericalCoordinates
SphericalcoordinatesaredefinedrelativetoCartesiancoordinatesassuggestedinthe
figuresabove(twoviewsofthesamething).Thegreensurfaceisthexy-plane,theredsurfaceisthe
xz-plane,whilethebluesurface(atleastintheleftimage)istheyz-plane.Thesethreeplanesintersectat
theorigin(0,0,0),whichliesdeeperintothepagethan(1,1,0).Thestraightredline,drawnfromthe
origintothepoint(/\0,(|))*haslengthr,Theangle0istheangletheredlinemakeswiththez-axis(the
redcirculararclabelled0hasradiusrandissubtendedbytheangle0).Theangle。(measuredinthe
xy-plane)istheanglethesecondblueplane(actuallyifsonequadrantofadisk)makeswiththexy-
plane(red).Thisplanewhichisaquadrantofadiskisa(j)=constsurface:allpointsonthisplanehave
thesame(|)coordinate.Thesecondred(circular)arclabelled。isalsosubtendedbytheangle([>.
*Thisparticularfigurewasdrawnusingr-1,0=TC/4and([)=兀/3.
Copyright?2000byDennisC.Prieve
06-70310Fall,2000
Anumberofother(|)=constplanesare
showninthefigureatright,alongwitha
sphereofradiusr=l.Alltheseplanes
intersectalongthez-axis,whichalsopasses
throughthecenterofthesphere.1-
x=rsin0cos(|)0.5-
y=rsin0sin(|)0=tan-1+產°-
-0.5-
z=rcosG0=tan-1(y/x)
-1-
Thepositionvectorinsphericalcoordinates
isgivenby0-0.5
yX
r=xi+)j+zk=rer(0?<l))
Inthiscaseallthreeunitvectorsdependon
position:
er=e.。,#,ee=ee(0,(|)),ande。=e/Q)
whereeristheunitvectorpointingthedirectionofincreasingr,holding0and(|)fixed;e0istheunit
vectorpointingthedirectionofincreasing0,holdingrand0fixed;ande,istheunitvectorpointingthe
directionofincreasing%holdingrand0fixed.
Theseunitvectorsareshowninthefigureatright.
Noticethatthesurface0=constisaplanecontainingthe
pointritself,theprojectionofthepointontothexy-plane
andtheorigin.Theunitvectorserandeelieinthisplanez
aswellastheCartesianunitvectork(sometimes*
denotedez).
Ifwetiltthis(|)=constplane
intotheplaneofthepage(asinthesketchatleft),wecanmoreeasilysee
therelationshipbetweenthesethreeunitvectors:
unitcircleone.=(cos0)er-(sin0)ee
(j>=const
surface
Thisisobtainedbydeterminedfromthegeometiyoftherighttrianglein
thefigureatleft.Whenanyoftheunitvectorsispositiondependent,we
saythecoordinatesare:
Copyright?2000byDennisC.Prieve
06-70311Fall,2000
curvilinear-atleastoneofthebasisvectorsispositiondependent
Thiswillhavesomeprofoundconsequenceswhichwewillgettoshortly.Butfirst,weneedtotake
“time-out“todefine:
DIFFERENTIATIONOFVECTORSW.R.T.SCALARS
Supposewehaveavectorvwhichdependsonthescalarparametert:
v=v(r)
Forexample,thevelocityofasatellitedependsontime.Whatdowemeanbythe“derivative”ofa
vectorwithrespecttoascalar.AsintheFundamentalTheoremofCalculus,wedefinethederivative
as:
dvlimv(r+Ar)-v(r)
—=
dtNt
Notethatdy/dtisalsoavector.
EXAMPLE:ComputedeJdBincylindricalcoordinates.
Solution:Fromthedefinitionofthederivative:
de「_lim|巧.一+一與(田]_lim{Aer
c/SAe^0[A6JAB-^0[A0
Sincethelocationofthetailofavectorisnotpart
ofthedefinitionofavector,let'smoveboth
vectorstotheorigin(keepingtheorientation
fixed).Usingtheparallelogramlaw,weobtainthe
differencevector.Itsmagnitudeis:
|er(e+A0)-er(G)|=2sin^
Itsdirectionisparalleltoe0(6+A0/2),so:
er(e+A0)-er(G)=2si噂e?(6+豹
Recallingthatsinxtendstoxasx70,wehave
Copyright?2000byDennisC.Prieve
06-70312Fall,2000
lim{er(0+A0)-er(e)}=A0ee(0)
DividingthisbyAO,weobtainthederivative:
deJdB=e。
Similarly,=-er
Oneimportantapplicationof''differentiationwithrespecttoa
scalar“isthecalculationofvelocity,givenpositionasafunctionof
time.Ingeneral,ifthepositionvectorisknown,thenthevelocity
canbecalculatedastherateofchangeinposition:
r=r(r)
v=dr/dt
Similarly,theaccelerationvectoracanbecalculatedasthe
derivativeofthevelocityvectorv:
a=dx/dt
EXAMPLE:Giventhetrajectoryofanobjectin
cylindricalcoordinates
r=r(0,0=0(0,andz=z(Z)
Findthevelocityoftheobject.
Solution:First,weneedtoexpressrinintermsofthe
unitvectorsincylindricalcoordinates.Usingthefigureat
right,wenotebyinspectionthat*
r(八e,z)=rer(0)+zez
NowwecanapplytheChainRule:
Recallingthatr=xi+yj+zkinCartesiancoordinates,youmightbetemptedtowriter=rer+0ee+
zezincylindricalcoordinates.Ofcourse,thistemptationgivesthewrongresult(inparticular,theunits
oflengthinthesecondtermaremissing).
Copyright?2000byDennisC.Prieve
06-70313Fall,2000
「an(加、
Jr=—Jr+—<70+—dz=erdr+i-e^dQ+e-dz
1氏人,0
er”e「(。)與
r
d。
ee
Dividingbydi,weobtainthevelocity:
drdr(t')t/0(z)以(。
dtdtdtdtz
v
ri'evz
VECTORFIELDS
Avectorfieldisdefinedjustlikeascalarfield,exceptthatit'savector.Namely,avectorfieldisa
position-dependentvector:
v=v(r)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社交媒體營銷合同書二零二五年
- 2025設備借款抵押合同樣本
- 2025短期雇傭員工合同
- 2025北京家庭裝修設計合同樣本(官方)
- 2025南京徐工汽車制造有限公司礦卡合同
- 2025年工廠租賃合同范本
- 藝術學的探索旅程
- 銀行服務優化策略
- 醫學博士之路
- 2025年電子商務平臺合作合同模板
- 開題報告:高等職業院校雙師型教師評價指標體系構建研究
- 醫療救助政策
- 浙江省寧波市余姚市2024年中考英語模擬試題(含答案)
- 服務質量保障措施方案
- 機場能源管理
- 高速公路路基及土石方工程施工方案與技術措施
- 技能人才評價新職業考評員培訓在線考試(四川省)
- AQ 1083-2011 煤礦建設安全規范 (正式版)
- 河南省開封市鐵路中學2023-2024學年八年級下學期6月期末歷史試題
- CJT165-2002 高密度聚乙烯纏繞結構壁管材
- 駕駛員交通安全培訓及考試試題
評論
0/150
提交評論