流體力學與矢量場理論計算_第1頁
流體力學與矢量場理論計算_第2頁
流體力學與矢量場理論計算_第3頁
流體力學與矢量場理論計算_第4頁
流體力學與矢量場理論計算_第5頁
已閱讀5頁,還剩193頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ACourseinFluidMechanics

withVectorFieldTheory

by

DennisC.Prieve

DepartmentofChemicalEngineering

CarnegieMellonUniversity

Pittsburgh,PA15213

AnelectronicversionofthisbookinAdobePDF?formatwasmadeavailableto

studentsof()6-703,DepartmentofChemicalEngineering,

CarnegieMellonUniversity,Fall,2000.

Copyright?2(XX)byDennisC.Prieve

06-7031Fall,2000

TableofContents

ALGEBRAOFVECTORSANDTENSORS1

DefinitionofDyadicProduct2

DECOMPOSITIONINTOSCALARCOMPONENTS3

GeometricMeaningoftheGradient6

ApplicationsofGradient7

CURVILINEARCOORDINATES7

CylindricalCoordinates7

SphericalCoordinates8

DIFFERENTIATIONOFVECTORSW.R.T.SCALARS9

VFCTORFlFLDSI;

FluidVelocityasaVectorFieldII

PARTIAL&MATERIALDERIVATIVES12

CALCULUSOFVECTORFIELDS14

DIVERGENCE,CURL,ANDGRADIENT16

PhysicalInterpretationofDivergence16

Calculationo/V-vinR.C.C.S16

Evaluationo廣.v,VxvandVvinCurvilinearCoordinates19

PhysicalInterpretationofCurl20

VECTORFIELDTHEORY22

CorollariesoftheDivergenceTheorem24

TheContinuityEquation24

ReynoldsTransportTheorem26

VelocityCirculation:PhysicalMeaning28

DERIVABLEFROMASCALARPOTENTIAL29

TRANSPOSEOFATENSOR,IDENTITYTENSOR31

DIVERGENCEOFATENSOR32

INTRODUCTIONTOCONTINUUMMECHANICS*34

CONTINUUMHYPOTHESIS34

HYDROSTATICEQUILIBRIUM37

FLOWOFIDEALFLUIDS37

IRROTATIONALFLOWOFANINCOMPRESSIBLEFLUID42

PotentialFlowAroundaSphere45

Copyright?2000byDennisC.Prieve

06-7032Fall,2000

Two-DFLOWS54

AXISYMMETRICFLOW(CYLINDRICAL)55

STREAMLINES,PATHLINESANDSTREAKLINES57

PHYSICALMEANINGOFSTREAMFUNCTION58

VISCOUSFLUIDS62

TENSORIALNATUREOFSURFACEFORCES62

GENERALIZATIONOFEULER'SEQUATION66

RESPONSEOFELASTICSOLIDSTOUNIAXIALSTRESS70

RESPONSEOFELASTICSOLIDSTOPURESHEAR72

RESPONSEOFAVISCOUSFLUIDTOPURESHEAR75

GENERALIZEDNEWTON'SLAWOFVISCOSITY76

EXACTSOLUTIONSOFN-SEQUATIONS80

FlowinLongStraightConduitofUniformCrossSection81

FlowofThinFilmDownInclinedPlane84

PROBLEMSWITHNON-ZEROINERTIA89

CREEPINGFLOWAPPROXIMATION91

CREEPINGFLOWAROUNDASPHERE(Re->0)96

Scaling97

VelocityProfile99

DisplacementofDistantStreamlines101

CORRECTINGFORINERTIALTERMS106

FLOWAROUNDCYLINDERASRE—>0109

BOUNDARY-LAYERAPPROXIMATION110

MATHEMATICALNATUREOFBOUNDARYLAYERS111

MATCHED-ASYMPTOTICEXPANSIONS115

MAE'sAPPLIEDTO2-DFLOWAROUNDCYLINDER120

InnerExpansion120

BoundaryLayerThickness120

PRANDTUSB.L.EQUATIONSFOR2-DFLOWS120

ALTERNATEMETHOD:PRANDTL*SSCALINGTHEORY120

TimeOut:FlowNexttoSuddenlyAcceleratedPlate120

TimeIn:BoundaryLayeronFlatPlate120

Copyright?2000byDennisC.Prieve

06-7033Fall,2000

SOLUTIONFORASYMMETRICCYLINDER120

DragCoefficientandBehaviorintheWakeoftheCylinder120

THELUBRICATIONAPPROXIMATION157

TRANSLATIONOFACYLINDERALONGAPLATE163

TURBULENCE176

TURBULENTFLOWINPIPES177

TIME-SMOOTHINGOFCONTINUITYEQUATION180

TIME-SMOOTHINGOFTHENAVIER-STOKESEQUATION180

ANALYSISOFTURBULENTFLOWINPIPES182

PRANDTL'SMIXINGLENGTHTHEORY184

PRANDTL'S“UNIVERSAL“VELOCITYPROFILE187

PRANDTfSUNIVERSALLAWOFFRICTION189

ELECTROHYDRODYNANUCS120

GOUY-CHAPMANMODELOFDOUBLELAYER120

ELECTROSTATICBODYFORCES120

ELECTROKINETICPHENOMENA120

SMOLUCHOWSKI'SANALYSIS(CA.1918)120

ELECTRO-OSMOSISINCYLINDRICALPORES120

SURFACETENSION120

BOUNDARYCONDITIONSFORFLUIDFLOW120

INDEX211

Copyright?2000byDennisC.Prieve

06-7031Fall,2000

AlgebraofVectorsandTensors

Whereasheatandmassarescalars,fluidmechanicsconcernstransportofmomentum,whichisa

vector.Heatandmassfluxesarevectors,momentumfluxisatensor.Consequently,themathematical

descriptionoffluidflowtendstobemoreabstractandsubtlethanforheatandmasstransfer.Inan

efforttomakethestudentmorecomfortablewiththemathematics,wewillstartwithareviewofthe

algebraofvectorsandanintroductiontotensorsanddyads.Abriefreviewofvectoradditionand

multiplicationcanbefoundinGreenberg,*pages132-139.

Scalar-aquantityhavingmagnitudebutnodirection(e.g.temperature,density)

Vector-(a.k.a.1stranktensor)aquantityhavingmagnitudeanddirection(e.g.velocity,force,

momentum)

(2ndrank)Tensor-aquantityhavingmagnitudeandtwodirections(e.g.momentumflux,

stress)

VECTORMULTIPLICATION

Giventwoarbitraryvectorsaandb,therearethreetypesofvectorproducts

aredefined:

NotationResultDefinition

DotProducta-bscalarabcos0

CrossProductaxbvectorab|sinGIn

where0isaninteriorangle(0<0<TT)andnisaunitvectorwhichisnormaltobothaandb.The

senseofnisdeterminedfromthe"right-hand-rule"?

DyadicProductabtensor

*Greenberg,M.D.,FoundationsOfAppliedMathematics,Prentice-Hall,1978.

?The^right-handrule”:withthefingersoftherighthandinitiallypointinginthedirectionofthefirst

vector,rotatethefingerstopointinthedirectionofthesecondvector;thethumbthenpointsinthe

directionwiththecorrectsense.Ofcourse,thethumbshouldhavebeennormaltotheplanecontaining

bothvectorsduringtherotation.Inthefigureaboveshowingaandb,axbisavectorpointingintothe

page,whilebxapointsoutofthepage.

Copyright?2000byDennisC.Prieve

06-7032Fall,2000

Intheabovedefinitions,wedenotethemagnitude(orlength)ofvectorabythescalara.Boldfacewill

beusedtodenotevectorsanditalicswillbeusedtodenotescalars.Second-ranktensorswillbe

denotedwithdouble-underlinedboldface;e.g.tensorJ.

DefinitionofDyadicProduct

Reference:AppendixBfromHappel&Brenner.*Thewordudyad^^comesfromGreek:“dy”

meanstwowhile“ad”meansadjacent.Thusthenamedyadreferstothewayinwhichthisproductis

denoted:thetwovectorsarewrittenadjacenttooneanotherwithnospaceorotheroperatorin

between.

ThereisnogeometricalpicturethatIcandrawwhichwillexplainwhatadyadicproductis.It*sbest

tothinkofthedyadicproductasapurelymathematicalabstractionhavingsomeveryusefulproperties:

DyadicProductab-thatmathematicalentitywhichsatisfiesthefollowingproperties(wherea,

b,v,andwareanyfourvectors):

1.ab-v=a(b?v)[whichhasthedirectionofa;notethatba-v=b(a?v)whichhasthedirectionof

b.Thusab工basincetheydon'tproducethesameresultonpost-dottingwithv.]

2.v-ab=(v-a)b[thusv?abab-v]

3.abxv=a(bxv)whichisanotherdyad

4.vxab=(vxa)b

5.ab:vw=(a?w)(b-v)whichissometimesknownastheinner-outerproductorthedouble-dot

product:

6.a(v+w)=av+aw(distributiveforaddition)

7.(v+w)a=va+wa

8.(s+/)ab=sab+rab(distributiveforscalarmultiplication-alsodistributivefordotandcross

product)

9.sab=(sa)b=a(sb)

“Happel,J.,&H.Brenner,LowReynoldsNumberHydrodynamics.Noordhoff,1973.

“Brennerdefinesthisas(a?v)(b?w).Althoughthetwodefinitionsarenotequivalent,eithercanbe

used-aslongasyouareconsistent.Inthesenotes,wewilladoptthedefinitionaboveandignore

Brennefsdefinition.

Copyright?2000byDennisC.Prieve

06-7033Fall,2000

DECOMPOSITIONINTOSCALARCOMPONENTS

Threevectors(saye],e?,and03)aresaidtobelinearlyindependentifnonecanbeexpressed

asalinearcombinationoftheothertwo(e.g.i,j,andk).GivensuchasetofthreeLIvectors,any

vector(belongingtoE3)canbeexpressedasalinearcombinationofthisbasis:

v=vlel+v2e2+v3e3

wherethev,arecalledthescalarcomponentsofv.Usually,forconvenience,wechoose

orthonormalvectorsasthebasis:

lifi=j

3號=而=

OifiWj

althoughthisisnotnecessary.即iscalledtheKroneckerdelta.Justasthefamiliardotandcross

productscanwrittenintermsofthescalarcomponents,socanthedyadicproduct:

VW=(v1e222+^3。3)(卬遇1+卬2。2+叩3£3)

=(vje1)(w1eI)+(V)ej)(w2e2)+...

=?[卬遇匹]+1/]卬20遇2+…(nineterms)

wherethee’e,areninedistinctunitdyads.Wehaveappliedthedefinitionofdyadicproductto

performthesetwosteps:inparticularitems6,7and9inthelistabove.

Moregenerallyanynthranktensor(inE^)canbeexpressedasalinearcombinationofthe券unitn-

ads.Forexample,ifn=2,3〃=9andann-adisadyad.Thusageneralsecond-ranktensorcanbe

decomposedasalinearcombinationofthe9unitdyads:

1=7,llelel+7,12ele2+-='=1,3?廣1,37瀘

tensors

Althoughadyad(e.g.vw)isanexampleofasecond-ranktensor,notall'\

2ndranktensorsIcanbeexpressedasadyadicproductoftwovectors,1/山-^\I

Toseewhy,notethatageneralsecond-ranktensorhasninescalar\\//

componentswhichneednotberelatedtooneanotherinanyway.By\—

contrast,the9scalarcomponentsofdyadicproductaboveinvolveonlysix

distinctscalars(the3componentsofvplusthe3componentsofw).

Afterawhileyougettiredofwritingthesummationsignsandlimits.Soan

abbreviationwasadoptedwherebyrepeatedappearanceofanindeximpliessummationoverthethree

allowablevaluesofthatindex:

工=丁恒

Copyright?2000byDennisC.Prieve

06-7034Fall,2000

ThisissometimescalledtheCartesian(implied)summationconvention.

SCALARFIELDS

SupposeIhavesomescalarfunctionofposition(x,y,z)whichiscontinuouslydifferentiable,that

is

anddf/dx,df/dy,anddf/dzexistandarecontinuousthroughoutsome3-Dregioninspace.This

functioniscalledascalarfield.Nowconsider/atasecondpointwhichisdifferentiallyclosetothe

first.Thedifferenceinfbetweenthesetwopointsis

calledthetotaldifferentialof/:

f(x+dxfy+dyfz+dz)-/(x,y,z)=df

Foranycontinuousfunction/(x,y,z),dfislinearlyrelated

tothepositiondisplacements,dx,dyandThat

linearrelationisgivenbytheChainRuleof

differentiation:

Insteadofdefiningpositionusingaparticularcoordinate

system,wecouldalsodefinepositionusingapositionvectorr:

r=xi++zk

Thescalarfieldcanbeexpressedasafunctionofavectorargument,representingposition,insteadofa

setofthreescalars:

/=/(r)

Consideranarbitrarydisplacementawayfromthepointr,whichwedenoteasdrtoemphasizethatthe

magnitude|dr\ofthisdisplacementissufficiendysmallthatf(r)canbelinearizedasafunctionof

positionaroundr.Thenthetotaldifferentialcanbewrittenas

Copyright?2000byDennisC.Prieve

06-7035Fall,2000

df=/(r+Jr)-/(r)

GRADIENTOFASCALAR

Wearenowisapositiontodefineanimportantvectorassociated

withthisscalarfield.Thegradient(denotedasV/)isdefined

suchthatthedotproductofitandadifferentialdisplacement

vectorgivesthetotaldifferential:

dfmdrZf

EXAMPLE:ObtainanexplicitformulaforcalculatingthegradientinCartesian*coordinates.

Solution'.r=xi++zk

r+c/r=(x+dx)i+(y+dy)j+(z+dz)k

subtracting:dr=(dx)i+(dy)j+?z)k

v=(w+(w+(w

dr?Vf=[(dx)i+..J?KW)/+???]

df=(Nf)xdx+(yf)ydy+⑴

UsingtheChainrule:df=(df/dx)dx+(df/dy)dy+(df/dz)dzQ)

Accordingtothedefinitionofthegradient,(1)and(2)areidentical.Equatingthemandcollectingterms:

+KV/y(型力)"+=o

Thinkofdx,dy,anddzasthreeindependentvariableswhichcanassumeaninfinitenumberofvalues,

eventhoughtheymustremainsmall.Theequalityabovemustholdforallvaluesofdx,dy,anddz.The

onlywaythiscanbetrueisifeachindividualtermseparatelyvanishes:**

*NamedafterFrenchphilosopherandmathematicianReneDescartes(1596-1650),pronounced"day-

cart",whofirstsuggestedplotting/(x)onrectangularcoordinates

**Foranyparticularchoiceofdx,dy,anddz,wemightobtainzerobycancellationofpositiveand

negativeterms.Howeverasmallchangeinoneofthethreewithoutchangingtheothertwowouldcause

thesumtobenonzero.Toensureazero-sumforallchoices,wemustmakeeachtermvanish

independently.

Copyright?2000byDennisC.Prieve

06-7036Fall,2000

So(Y/)x=df/dx,(yf)y=^f/dy,and(V/)2=df/dz,

leaving如i+蛆j+/k

dx3ydz

Otherwaystodenotethegradientinclude:

V/'=gradf=df/dr

GeometricMeaningoftheGradient

1)direction:V/(r)isnormaltothe尸constsurfacepassingthroughthepointrinthedirectionof

increasing/.V/,alsopointsinthedirectionofsteepestascentoff.

2)magnitude:|V/]istherateofchangeoffwith

distancealongthisdirection

Whatdowemeanbyan7=constsurface1*?Consideran

example.

Example'.Supposethesteadystatetemperatureprofile

insomeheatconductionproblemisgivenby:

T(x,y,Z)=H+,2+

PerhapsweareinterestedinNTatthepoint(3,3,3)

where7=27.NTisnormaltotheT=constsurface:

+y2+/=27

whichisasphereofradiusV27.*

Proofof1),Let'susethedefinitiontoshowthatthesegeometricmeaningsarecorrect.

df=dr-Vf

*Averticalbarintheleftmargindenotesmaterialwhich(intheinterestoftime)willbeomittedfromthe

lecture.

Copyright?2000byDennisC.Prieve

06-7037Fall,2000

Consideranarbitraryf.Aportionofthe六constsurface

containingthepointrisshowninthefigureatright.Choosea

drwhichliesentirelyon/^=const.Inotherwords,thesurface

containsbothrandr+dr,so

{r)=/(r+dr)

anddf=f(r+dr)-f(r)=0

Substitutingthisintothedefinitionofgradient:

df=0=dr-Vf=|dr||V7|

SinceIdrIandIV/|areingeneralnotzero,weareforced

totheconclusionthatcos0=Oor0=90°.ThismeansthatV/isnormaltodrwhichliesinthesurface.

2)canbeprovedinasimilarmanner:choosedrtobeparalleltoV/.DoesNfpointtowardhigheror

lowervaluesof/?

ApplicationsofGradient

?findavectorpointinginthedirectionofsteepestascentofsomescalarfield

?determineanormaltosomesurface(neededtoapplyb.c/s1汰en-v=0foraboundarywhichis

impermeable)

?determinetherateofchangealongsomearbitrarydirection:ifnisaunitvectorpointingalongsome

path,then

nF嗎

OS

istherateofchangeoffwithdistance(s)alongthispathgivenbyn.df/dsiscalledthedirected

derivativeoff.

CURVILINEARCOORDINATES

Inprinciple,allproblemsinfluidmechanicsandtransportcouldbesolvedusingCartesian

coordinates.Often,however,wecantakeadvantageofsymmetryinaproblembyusinganother

coordinatesystem.Thisadvantagetakestheformofareductioninthenumberofindependentvariables

(e.g.PDEbecomesODE).Afamiliarexampleofanon-Cartesiancoordinatesystemis:

Copyright?2000byDennisC.Prieve

06-7038Fall,2000

CylindricalCoordinates

r=(]2+y2)l/2x=rcOs0

0=tan-1(y/x)y-rsin0

z=zz=z

Vectorsaredecomposeddifferently.Insteadof

inR.C.C.S.:v=vxi+

incylindricalcoordinates,wewrite

incyl.coords.:v=vrer+v0e0+

whereer,eg,ande.arenewunitvectorspointingther,0andzdirections.Wealsohaveadifferent

setofnineunitdyadsfordecomposingtensors:

erer,ereg,erez,ege,.,etc.

LiketheCartesianunitvectors,theunitvectorsincylindricalcoordinatesformanorthonormalsetof

basisvectorsforE?.UnlikeCartesianunitvectors,theorientationoferande°dependonposition.In

otherwords:

er=er(0)

%=。(。)

Copyright?2000byDennisC.Prieve

06-7039Fall,2000

SphericalCoordinates

SphericalcoordinatesaredefinedrelativetoCartesiancoordinatesassuggestedinthe

figuresabove(twoviewsofthesamething).Thegreensurfaceisthexy-plane,theredsurfaceisthe

xz-plane,whilethebluesurface(atleastintheleftimage)istheyz-plane.Thesethreeplanesintersectat

theorigin(0,0,0),whichliesdeeperintothepagethan(1,1,0).Thestraightredline,drawnfromthe

origintothepoint(/\0,(|))*haslengthr,Theangle0istheangletheredlinemakeswiththez-axis(the

redcirculararclabelled0hasradiusrandissubtendedbytheangle0).Theangle。(measuredinthe

xy-plane)istheanglethesecondblueplane(actuallyifsonequadrantofadisk)makeswiththexy-

plane(red).Thisplanewhichisaquadrantofadiskisa(j)=constsurface:allpointsonthisplanehave

thesame(|)coordinate.Thesecondred(circular)arclabelled。isalsosubtendedbytheangle([>.

*Thisparticularfigurewasdrawnusingr-1,0=TC/4and([)=兀/3.

Copyright?2000byDennisC.Prieve

06-70310Fall,2000

Anumberofother(|)=constplanesare

showninthefigureatright,alongwitha

sphereofradiusr=l.Alltheseplanes

intersectalongthez-axis,whichalsopasses

throughthecenterofthesphere.1-

x=rsin0cos(|)0.5-

y=rsin0sin(|)0=tan-1+產°-

-0.5-

z=rcosG0=tan-1(y/x)

-1-

Thepositionvectorinsphericalcoordinates

isgivenby0-0.5

yX

r=xi+)j+zk=rer(0?<l))

Inthiscaseallthreeunitvectorsdependon

position:

er=e.。,#,ee=ee(0,(|)),ande。=e/Q)

whereeristheunitvectorpointingthedirectionofincreasingr,holding0and(|)fixed;e0istheunit

vectorpointingthedirectionofincreasing0,holdingrand0fixed;ande,istheunitvectorpointingthe

directionofincreasing%holdingrand0fixed.

Theseunitvectorsareshowninthefigureatright.

Noticethatthesurface0=constisaplanecontainingthe

pointritself,theprojectionofthepointontothexy-plane

andtheorigin.Theunitvectorserandeelieinthisplanez

aswellastheCartesianunitvectork(sometimes*

denotedez).

Ifwetiltthis(|)=constplane

intotheplaneofthepage(asinthesketchatleft),wecanmoreeasilysee

therelationshipbetweenthesethreeunitvectors:

unitcircleone.=(cos0)er-(sin0)ee

(j>=const

surface

Thisisobtainedbydeterminedfromthegeometiyoftherighttrianglein

thefigureatleft.Whenanyoftheunitvectorsispositiondependent,we

saythecoordinatesare:

Copyright?2000byDennisC.Prieve

06-70311Fall,2000

curvilinear-atleastoneofthebasisvectorsispositiondependent

Thiswillhavesomeprofoundconsequenceswhichwewillgettoshortly.Butfirst,weneedtotake

“time-out“todefine:

DIFFERENTIATIONOFVECTORSW.R.T.SCALARS

Supposewehaveavectorvwhichdependsonthescalarparametert:

v=v(r)

Forexample,thevelocityofasatellitedependsontime.Whatdowemeanbythe“derivative”ofa

vectorwithrespecttoascalar.AsintheFundamentalTheoremofCalculus,wedefinethederivative

as:

dvlimv(r+Ar)-v(r)

—=

dtNt

Notethatdy/dtisalsoavector.

EXAMPLE:ComputedeJdBincylindricalcoordinates.

Solution:Fromthedefinitionofthederivative:

de「_lim|巧.一+一與(田]_lim{Aer

c/SAe^0[A6JAB-^0[A0

Sincethelocationofthetailofavectorisnotpart

ofthedefinitionofavector,let'smoveboth

vectorstotheorigin(keepingtheorientation

fixed).Usingtheparallelogramlaw,weobtainthe

differencevector.Itsmagnitudeis:

|er(e+A0)-er(G)|=2sin^

Itsdirectionisparalleltoe0(6+A0/2),so:

er(e+A0)-er(G)=2si噂e?(6+豹

Recallingthatsinxtendstoxasx70,wehave

Copyright?2000byDennisC.Prieve

06-70312Fall,2000

lim{er(0+A0)-er(e)}=A0ee(0)

DividingthisbyAO,weobtainthederivative:

deJdB=e。

Similarly,=-er

Oneimportantapplicationof''differentiationwithrespecttoa

scalar“isthecalculationofvelocity,givenpositionasafunctionof

time.Ingeneral,ifthepositionvectorisknown,thenthevelocity

canbecalculatedastherateofchangeinposition:

r=r(r)

v=dr/dt

Similarly,theaccelerationvectoracanbecalculatedasthe

derivativeofthevelocityvectorv:

a=dx/dt

EXAMPLE:Giventhetrajectoryofanobjectin

cylindricalcoordinates

r=r(0,0=0(0,andz=z(Z)

Findthevelocityoftheobject.

Solution:First,weneedtoexpressrinintermsofthe

unitvectorsincylindricalcoordinates.Usingthefigureat

right,wenotebyinspectionthat*

r(八e,z)=rer(0)+zez

NowwecanapplytheChainRule:

Recallingthatr=xi+yj+zkinCartesiancoordinates,youmightbetemptedtowriter=rer+0ee+

zezincylindricalcoordinates.Ofcourse,thistemptationgivesthewrongresult(inparticular,theunits

oflengthinthesecondtermaremissing).

Copyright?2000byDennisC.Prieve

06-70313Fall,2000

「an(加、

Jr=—Jr+—<70+—dz=erdr+i-e^dQ+e-dz

1氏人,0

er”e「(。)與

r

d。

ee

Dividingbydi,weobtainthevelocity:

drdr(t')t/0(z)以(。

dtdtdtdtz

v

ri'evz

VECTORFIELDS

Avectorfieldisdefinedjustlikeascalarfield,exceptthatit'savector.Namely,avectorfieldisa

position-dependentvector:

v=v(r)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論