




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省宜春市宜豐中學2024-2025學年高三綜合練習數學試題卷(三模)請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的準線方程是,則實數()A. B. C. D.2.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.3.已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元4.設,是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④5.已知定點,,是圓上的任意一點,點關于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓6.在中,內角的平分線交邊于點,,,,則的面積是()A. B. C. D.7.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.8.設函數,若函數有三個零點,則()A.12 B.11 C.6 D.39.若為虛數單位,則復數,則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁11.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.12.函數在上單調遞減的充要條件是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設是等比數列的前項的和,成等差數列,則的值為_____.14.若點在直線上,則的值等于______________.15.設函數,若在上的最大值為,則________.16.已知數列滿足:,,若對任意的正整數均有,則實數的最大值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的內角的對邊分別為,且滿足.(1)求角的大小;(2)若的面積為,求的周長的最小值.18.(12分)已知集合,.(1)若,則;(2)若,求實數的取值范圍.19.(12分)已知函數(),且只有一個零點.(1)求實數a的值;(2)若,且,證明:.20.(12分)已知函數()的圖象在處的切線為(為自然對數的底數)(1)求的值;(2)若,且對任意恒成立,求的最大值.21.(12分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.22.(10分)已知函數的最大值為2.(Ⅰ)求函數在上的單調遞減區間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據準線的方程寫出拋物線的標準方程,再對照系數求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C本題考查拋物線與準線的方程.屬于基礎題.2.A【解析】
根據向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A本題主要考查了向量的線性運算,向量數量積的運算,向量數量積的性質,屬于中檔題.3.D【解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.4.C【解析】
根據線面平行或垂直的有關定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內過點作直線的垂線,則直線,又因為,設經過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C考查線面平行或垂直的判斷,基礎題.5.B【解析】
根據線段垂直平分線的性質,結合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B本題考查了雙曲線的定義,考查了數學運算能力和推理論證能力,考查了分類討論思想.6.B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應用,考查計算能力,屬于中等題.7.B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.8.B【解析】
畫出函數的圖象,利用函數的圖象判斷函數的零點個數,然后轉化求解,即可得出結果.【詳解】作出函數的圖象如圖所示,令,由圖可得關于的方程的解有兩個或三個(時有三個,時有兩個),所以關于的方程只能有一個根(若有兩個根,則關于的方程有四個或五個根),由,可得的值分別為,則故選B.本題考查數形結合以及函數與方程的應用,考查轉化思想以及計算能力,屬于常考題型.9.B【解析】
首先根據特殊角的三角函數值將復數化為,求出,再利用復數的幾何意義即可求解.【詳解】,,則在復平面內對應的點的坐標為,位于第二象限.故選:B本題考查了復數的幾何意義、共軛復數的概念、特殊角的三角函數值,屬于基礎題.10.A【解析】
可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么丁:我沒有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.11.D【解析】
取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最小.此時由面,可知為等腰直角三角形,,故.故選:D本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.12.C【解析】
先求導函數,函數在上單調遞減則恒成立,對導函數不等式換元成二次函數,結合二次函數的性質和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.本題考查求三角函數單調區間.求三角函數單調區間的兩種方法:(1)代換法:就是將比較復雜的三角函數含自變量的代數式整體當作一個角(或),利用基本三角函數的單調性列不等式求解;(2)圖象法:畫出三角函數的正、余弦曲線,結合圖象求它的單調區間.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
設等比數列的公比設為再根據成等差數列利用基本量法求解再根據等比數列各項間的關系求解即可.【詳解】解:等比數列的公比設為成等差數列,可得若則顯然不成立,故則,化為解得,則故答案為:.本題主要考查了等比數列的基本量求解以及運用,屬于中檔題.14.【解析】
根據題意可得,再由,即可得到結論.【詳解】由題意,得,又,解得,當時,則,此時;當時,則,此時,綜上,.故答案為:.本題考查誘導公式和同角的三角函數的關系,考查計算能力,屬于基礎題.15.【解析】
求出函數的導數,由在上,可得在上單調遞增,則函數最大值為,即可求出參數的值.【詳解】解:定義域為,在上單調遞增,故在上的最大值為故答案為:本題考查利用導數研究函數的單調性與最值,屬于基礎題.16.2【解析】
根據遞推公式可考慮分析,再累加求出關于關于參數的關系,根據表達式的取值分析出,再用數學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數均有.所以.當時,證明:對任意的正整數都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數學歸納法可知,對任意的正整數都有.綜上可知,所求實數的最大值是2.故答案為:2本題主要考查了根據數列的遞推公式求解參數最值的問題,需要根據遞推公式累加求解,同時注意結合參數的范圍問題進行分析.屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)因為,所以,由余弦定理得,化簡得,可得,解得,又因為,所以.(6分)(2)因為,所以,則(當且僅當時,取等號).由(1)得(當且僅當時,取等號),解得.所以(當且僅當時,取等號),所以的周長的最小值為.18.(1);(2)【解析】
(1)將代入可得集合B,解對數不等式可得集合A,由并集運算即可得解.(2)由可知B為A的子集,即;當符合題意,當B不為空集時,由不等式關系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因為,故;若,即時,,符合題意;若,即時,,解得;綜上所述,實數的取值范圍為.本題考查了集合的并集運算,由集合的包含關系求參數的取值范圍,注意討論集合是否為空集的情況,屬于基礎題.19.(1)(2)證明見解析【解析】
(1)求導可得在上,在上,所以函數在時,取最小值,由函數只有一個零點,觀察可知則有,即可求得結果.(2)由(1)可知為最小值,則構造函數(),求導借助基本不等式可判斷為減函數,即可得,即則有,由已知可得,由,可知,因為時,為增函數,即可得證得結論.【詳解】(1)().因為,所以,令得,,且,,在上;在上;所以函數在時,取最小值,當最小值為0時,函數只有一個零點,易得,所以,解得.(2)由(1)得,函數,設(),則,設(),則,,所以為減函數,所以,即,所以,即,又,所以,又當時,為增函數,所以,即.本題考查借助導數研究函數的單調性及最值,考查學生分析問題的能力,及邏輯推理能力,難度困難.20.(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據函數的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據對任意恒成立,等價于對任意恒成立,構造,求出的單調性,由,,,,可得存在唯一的零點,使得,利用單調性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調遞增.又,,,,所以存在唯一的,使得,且當時,,時,.即在單調遞減,在上單調遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導數研究不等式恒成立或存在型問題,首先要構造函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造函數,直接把問題轉化為函數的最值問題.21.(1)1;(2)【解析】
(1),在和中分別運用余弦定理可表示出,運用算兩次的思想即可求得,進而求出;(2)在中,根據余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數的有界性,求出的面積的最大值.【詳解】(1)由題設,則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025園林綠化設計合同書范本
- 教育與培訓行業:教育行業教育培訓機構運營管理創新
- 風力發電場2025年建設社會穩定風險評估與風險評估標準制定報告
- 2025年中醫藥康養旅游示范基地政策法規與合規性分析
- 珠心算工作總結模版
- 食品質量安全追溯技術在食品安全追溯系統中的關鍵技術研究報告
- 工作團結合作的總結模版
- 參加《小學語文教材備課會》培訓總結
- 福建省南平市劍津片區2023-2024學年中考適應性考試數學試題含解析
- (總結范稿)之2025年大學思想道德考核表個人總結模版
- 2024年注冊安全工程師考試金屬非金屬礦山(中級)安全生產專業實務試卷及解答參考
- Unit 1 Science Fiction詞匯學習教學設計-2023-2024學年高中英語人教版(2019)選擇性必修第四冊
- 心房顫動診斷和治療中國指南(2023) 解讀
- 專題08 解析幾何(解答題)-【好題匯編】五年(2020-2024)高考數學真題分類匯編(含答案解析)
- 設計公司員工勞動合同模板2024年
- DB13-T 5821-2023 預拌流態固化土回填技術規程
- 訴前調解申請書
- DL∕T 1928-2018 火力發電廠氫氣系統安全運行技術導則
- 健康養老產業行業營銷策略方案
- DZ∕T 0173-2022 大地電磁測深法技術規程
- 醫療服務售后服務保證協議書
評論
0/150
提交評論