江蘇泰州市高港實驗校2025年初三聯合模擬數學試題含解析_第1頁
江蘇泰州市高港實驗校2025年初三聯合模擬數學試題含解析_第2頁
江蘇泰州市高港實驗校2025年初三聯合模擬數學試題含解析_第3頁
江蘇泰州市高港實驗校2025年初三聯合模擬數學試題含解析_第4頁
江蘇泰州市高港實驗校2025年初三聯合模擬數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇泰州市高港實驗校2025年初三聯合模擬數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知3a﹣2b=1,則代數式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣32.如圖,∠ACB=90°,D為AB的中點,連接DC并延長到E,使CE=CD,過點B作BF∥DE,與AE的延長線交于點F,若AB=6,則BF的長為()A.6 B.7 C.8 D.103.下面的統計圖反映了我國最近十年間核電發電量的增長情況,根據統計圖提供的信息,下列判斷合理的是()A.2011年我國的核電發電量占總發電量的比值約為1.5%B.2006年我國的總發電量約為25000億千瓦時C.2013年我國的核電發電量占總發電量的比值是2006年的2倍D.我國的核電發電量從2008年開始突破1000億千瓦時4.在平面直角坐標系中,將拋物線繞著它與軸的交點旋轉180°,所得拋物線的解析式是().A. B.C. D.5.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數為2的概率為”表示隨著拋擲次數的增加,“拋出朝上的點數為2”這一事件發生的概率穩定在附近6.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:17.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.8.如圖,⊙O的半徑為1,△ABC是⊙O的內接三角形,連接OB、OC,若∠BAC與∠BOC互補,則弦BC的長為()A. B.2 C.3 D.1.59.已知二次函數的圖象與軸交于點、,且,與軸的正半軸的交點在的下方.下列結論:①;②;③;④.其中正確結論的個數是()個.A.4個 B.3個 C.2個 D.1個10.小王拋一枚質地均勻的硬幣,連續拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.11.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數是()A.70° B.80° C.110° D.140°12.有下列四個命題:①相等的角是對頂角;②兩條直線被第三條直線所截,同位角相等;③同一種正五邊形一定能進行平面鑲嵌;④垂直于同一條直線的兩條直線互相垂直.其中假命題的個數有()A.1個B.2個C.3個D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在正方形鐵皮上剪下一個扇形和一個半徑為1cm的圓形,使之恰好圍成一個圓錐,則圓錐的高為______.14.若一個等腰三角形的周長為26,一邊長為6,則它的腰長為____.15.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.16.如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______.17.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點,D點是射線AC上的一個動點,將△ADE沿線段DE翻折,得到△A′DE,當A′D⊥AB時,則線段AD的長為_____.18.觀察圖形,根據圖形面積的關系,不需要連其他的線,便可以得到一個用來分解因式的公式,這個公式是________________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)我市304國道通遼至霍林郭勒段在修建過程中經過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結果取整數,參考數據≈1.732)20.(6分).21.(6分)對于某一函數給出如下定義:若存在實數p,當其自變量的值為p時,其函數值等于p,則稱p為這個函數的不變值.在函數存在不變值時,該函數的最大不變值與最小不變值之差q稱為這個函數的不變長度.特別地,當函數只有一個不變值時,其不變長度q為零.例如:下圖中的函數有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G2,函數G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.22.(8分)為紀念紅軍長征勝利81周年,我市某中學團委擬組織學生開展唱紅歌比賽活動,為此,該校隨即抽取部分學生就“你是否喜歡紅歌”進行問卷調查,并將調查結果統計后繪制成如下統計表和扇形統計圖.態度非常喜歡喜歡一般不知道頻數90b3010頻率a0.350.20請你根據統計圖、表,提供的信息解答下列問題:(1)該校這次隨即抽取了名學生參加問卷調查:(2)確定統計表中a、b的值:a=,b=;(3)該校共有2000名學生,估計全校態度為“非常喜歡”的學生人數.23.(8分)如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點C和點D均在小正方形的頂點上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點E在小正方形的頂點上,連接CE,請直接寫出線段CE的長.24.(10分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結果保留根號)25.(10分)如圖所示,平行四邊形形ABCD中,過對角線BD中點O的直線分別交AB,CD邊于點E,F.(1)求證:四邊形BEDF是平行四邊形;(2)請添加一個條件使四邊形BEDF為菱形.26.(12分)解不等式,并把它的解集表示在數軸上.27.(12分)定義:對于給定的二次函數y=a(x﹣h)2+k(a≠0),其伴生一次函數為y=a(x﹣h)+k,例如:二次函數y=2(x+1)2﹣3的伴生一次函數為y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函數y=(x﹣1)2﹣4,則其伴生一次函數的表達式為_____;(2)試說明二次函數y=(x﹣1)2﹣4的頂點在其伴生一次函數的圖象上;(3)如圖,二次函數y=m(x﹣1)2﹣4m(m≠0)的伴生一次函數的圖象與x軸、y軸分別交于點B、A,且兩函數圖象的交點的橫坐標分別為1和2,在∠AOB內部的二次函數y=m(x﹣1)2﹣4m的圖象上有一動點P,過點P作x軸的平行線與其伴生一次函數的圖象交于點Q,設點P的橫坐標為n,直接寫出線段PQ的長為時n的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.本題考查了求代數式的值,能夠整體代入是解此題的關鍵.2、C【解析】∵∠ACB=90°,D為AB的中點,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,點D是AB的中點,∴ED是△AFB的中位線,∴BF=2ED=3.故選C.3、B【解析】

由折線統計圖和條形統計圖對各選項逐一判斷即可得.【詳解】解:A、2011年我國的核電發電量占總發電量的比值大于1.5%、小于2%,此選項錯誤;B、2006年我國的總發電量約為500÷2.0%=25000億千瓦時,此選項正確;C、2013年我國的核電發電量占總發電量的比值是2006年的顯然不到2倍,此選項錯誤;D、我國的核電發電量從2012年開始突破1000億千瓦時,此選項錯誤;故選:B.本題考查的是條形統計圖和折線統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;折線統計圖表示的是事物的變化情況.4、B【解析】

把拋物線y=x2+2x+3整理成頂點式形式并求出頂點坐標,再求出與y軸的交點坐標,然后求出所得拋物線的頂點,再利用頂點式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,

∴原拋物線的頂點坐標為(-1,2),

令x=0,則y=3,

∴拋物線與y軸的交點坐標為(0,3),

∵拋物線繞與y軸的交點旋轉180°,

∴所得拋物線的頂點坐標為(1,4),

∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].

故選:B.本題考查了二次函數圖象與幾何變換,利用頂點的變化確定函數解析式的變化可以使求解更簡便.5、D【解析】

根據概率是指某件事發生的可能性為多少,隨著試驗次數的增加,穩定在某一個固定數附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數為2的概率為”表示隨著拋擲次數的增加,“拋出朝上的點數為2”這一事件發生的概率穩定在附近,故D符合題意;故選D本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.6、C【解析】

求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,

陰影部分的面積,

空白部分與陰影部分面積之比是::1,

故選C.本題考查正多邊形的性質、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考常考題型.7、B【解析】

陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【詳解】由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故答案選:B.本題考查的知識點是旋轉的性質及扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質及扇形面積的計算.8、A【解析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數、垂徑定理等知識,解題的關鍵是學會添加常用輔助線.9、B【解析】分析:根據已知畫出圖象,把x=?2代入得:4a?2b+c=0,把x=?1代入得:y=a?b+c>0,根據不等式的兩邊都乘以a(a<0)得:c>?2a,由4a?2b+c=0得而0<c<2,得到即可求出2a?b+1>0.詳解:根據二次函數y=ax2+bx+c的圖象與x軸交于點(?2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,畫出圖象為:如圖把x=?2代入得:4a?2b+c=0,∴①正確;把x=?1代入得:y=a?b+c>0,如圖A點,∴②錯誤;∵(?2,0)、(x1,0),且1<x1,∴取符合條件1<x1<2的任何一個x1,?2?x1<?2,∴由一元二次方程根與系數的關系知∴不等式的兩邊都乘以a(a<0)得:c>?2a,∴2a+c>0,∴③正確;④由4a?2b+c=0得而0<c<2,∴∴?1<2a?b<0∴2a?b+1>0,∴④正確.所以①③④三項正確.故選B.點睛:屬于二次函數綜合題,考查二次函數圖象與系數的關系,二次函數圖象上點的坐標特征,拋物線與軸的交點,屬于常考題型.10、B【解析】

直接利用概率的意義分析得出答案.【詳解】解:因為一枚質地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.此題主要考查了概率的意義,明確概率的意義是解答的關鍵.11、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內接四邊形的性質得到∠P=40°,然后根據圓周角定理求∠AOC的度數.詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.12、D【解析】

根據對頂角的定義,平行線的性質以及正五邊形的內角及鑲嵌的知識,逐一判斷.【詳解】解:①對頂角有位置及大小關系的要求,相等的角不一定是對頂角,故為假命題;②只有當兩條平行直線被第三條直線所截,同位角相等,故為假命題;③正五邊形的內角和為540°,則其內角為108°,而360°并不是108°的整數倍,不能進行平面鑲嵌,故為假命題;④在同一平面內,垂直于同一條直線的兩條直線平行,故為假命題.故選:D.本題考查了命題與證明.對頂角,垂線,同位角,鑲嵌的相關概念.關鍵是熟悉這些概念,正確判斷.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、cm【解析】

利用已知得出底面圓的半徑為:1cm,周長為2πcm,進而得出母線長,即可得出答案.【詳解】∵半徑為1cm的圓形,∴底面圓的半徑為:1cm,周長為2πcm,扇形弧長為:2π=,∴R=4,即母線為4cm,∴圓錐的高為:(cm).故答案為cm.此題主要考查了圓錐展開圖與原圖對應情況,以及勾股定理等知識,根據已知得出母線長是解決問題的關鍵.14、1【解析】

題中給出了周長和一邊長,而沒有指明這邊是否為腰長,則應該分兩種情況進行分析求解.【詳解】①當6為腰長時,則腰長為6,底邊=26-6-6=14,因為14>6+6,所以不能構成三角形;②當6為底邊時,則腰長=(26-6)÷2=1,因為6-6<1<6+6,所以能構成三角形;故腰長為1.故答案為:1.此題主要考查等腰三角形的性質及三角形三邊關系的綜合運用,關鍵是利用三角形三邊關系進行檢驗.15、1【解析】

如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據相似三角形的性質就可以求出結論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1本題考查了勾股定理的運用,相似三角形的判定及性質的運用,解答時求出△AED∽△ACB是解答本題的關鍵.16、1【解析】

首先證明AB=AC=a,根據條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長AD交⊙D于P′,此時AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.圓外一點到圓上一點的距離最大值為點到圓心的距離加半徑,最小值為點到圓心的距離減去半徑.17、或.【解析】

①延長A'D交AB于H,則A'H⊥AB,然后根據勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【詳解】解:分兩種情況:①如圖1所示:設AD=x,延長A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點,∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長為或.故答案為或.此題考查了勾股定理,三角形相似,關鍵在于做輔助線18、【解析】由圖形可得:三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、隧道最短為1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性質和三角函數解答即可.【詳解】如圖,作BD⊥AC于D,由題意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=,即,∴AD=400(米),在Rt△BCD中,∵tan45°=,即,∴CD=400(米),∴AC=AD+CD=400+400≈1092.8≈1093(米),答:隧道最短為1093米.【點睛】本題考查了解直角三角形的應用,正確添加輔助線構建直角三角形是解題的關鍵.20、5﹣.【解析】

根據特殊角的三角函數值進行計算即可.【詳解】原式==3﹣+4﹣2=5﹣.本題考查了特殊角的三角函數值,是基礎題目比較簡單.21、詳見解析.【解析】試題分析:(1)根據定義分別求解即可求得答案;(1)①首先由函數y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,可得函數G的圖象關于x=m對稱,然后根據定義分別求得函數的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數y=x﹣1,令y=x,則x﹣1=x,無解;∴函數y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數的不變值為±1,q=1﹣(﹣1)=1.∵函數y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,∴函數G的圖象關于x=m對稱,∴G:y=.∵當x1﹣1x=x時,x3=2,x4=3;當(1m﹣x)1﹣1(1m﹣x)=x時,△=1+8m,當△<2,即m<﹣時,q=x4﹣x3=3;當△≥2,即m≥﹣時,x5=,x6=.①當﹣≤m≤2時,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合題意,舍去);②∵當x5=x4時,m=1,當x6=x3時,m=3;當2<m<1時,x3=2(舍去),x4=3,此時2<x5<x4,x6<2,q=x4﹣x6>3(舍去);當1≤m≤3時,x3=2(舍去),x4=3,此時2<x5<x4,x6>2,q=x4﹣x6<3;當m>3時,x3=2(舍去),x4=3(舍去),此時x5>3,x6<2,q=x5﹣x6>3(舍去);綜上所述:m的取值范圍為1≤m≤3或m<﹣.點睛:本題屬于二次函數的綜合題,考查了二次函數、反比例函數、一次函數的性質以及函數的對稱性.注意掌握分類討論思想的應用是解答此題的關鍵.22、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】

(1)根據“一般”和“不知道”的頻數和頻率求總數即可(2)根據(1)的總數,結合頻數,頻率的大小可得到結果(3)根據“非常喜歡”學生的比值就可以計算出2000名學生中的人數.【詳解】解:(1)“一般”頻數30,“不知道”頻數10,兩者頻率0.20,根據頻數的計算公式可得,總數=頻數/頻率=(名);(2)“非常喜歡”頻數90,a=;(3).故答案為(1)200,;(2)a=0.45,b=70;(3)900名.此題重點考察學生對頻數和頻率的應用,掌握頻率的計算公式是解題的關鍵.23、作圖見解析;CE=4.【解析】分析:利用數形結合的思想解決問題即可.詳解:如圖所示,矩形ABCD和△ABE即為所求;CE=4.點睛:本題考查作圖-應用與設計、等腰三角形的性質、勾股定理、矩形的判定和性質等知識,解題的關鍵是學會利用思想結合的思想解決問題.24、【解析】

設燈柱BC的長為h米,過點A作AH⊥CD于點H,過點B作BE⊥AH于點E,構造出矩形BCHE,Rt△AEB,然后解直角三角形求解.【詳解】解:設燈柱的長為米,過點作于點過點做于點∴四邊形為矩形,∵∴又∵∴在中,∴∴又∴在中,解得,(米)∴燈柱的高為米.25、見解析【解析】

(1)根據平行四邊形的性質可得AB∥DC,OB=OD,由平行線的性質可得∠OBE=∠ODF,利用ASA判

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論