




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海市重點中學2025年高三下學期期末學習能力診斷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記遞增數(shù)列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數(shù)列中的項,則()A. B.C. D.2.在中,在邊上滿足,為的中點,則().A. B. C. D.3.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)4.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.5.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.6.已知是定義在上的奇函數(shù),且當時,.若,則的解集是()A. B.C. D.7.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重比為58.79kg8.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.9.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.10.已知為定義在上的奇函數(shù),若當時,(為實數(shù)),則關于的不等式的解集是()A. B. C. D.11.已知向量,,則與的夾角為()A. B. C. D.12.點為的三條中線的交點,且,,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,的系數(shù)等于__.14.已知集合,則_______.15.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護士,其中甲乙兩名護士不到同一地,共有__________種選派方法.16.設雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.18.(12分)已知動圓Q經(jīng)過定點,且與定直線相切(其中a為常數(shù),且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.19.(12分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.20.(12分)已知函數(shù).(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數(shù)的定義域和值域.21.(12分)等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)設數(shù)列{}的前項和為,求使成立的的最小值.22.(10分)已知函數(shù),不等式的解集為.(1)求實數(shù),的值;(2)若,,,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由題意可得,從而得到,再由就可以得出其它各項的值,進而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項,或者或者是該數(shù)列中的項,又數(shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項,同理可以得到,,,也是該數(shù)列中的項,且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.本題考查數(shù)列的新定義的理解和運用,以及運算能力和推理能力,屬于中檔題.2.B【解析】
由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.本題考查平面向量的線性運算性質(zhì)以及平面向量基本定理的應用,是一道基礎題.3.A【解析】
通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A本題主要考查樣本的數(shù)字特征,意在考查學生對這些知識的理解掌握水平.4.C【解析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項進行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎題.5.C【解析】
取中點,連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設,則,,,則,∴.故選:C.本題考查通過幾何法求異面直線的夾角,考查計算能力.6.B【解析】
利用函數(shù)奇偶性可求得在時的解析式和,進而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當時,,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.本題考查函數(shù)奇偶性的應用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數(shù)在處有意義時,的情況.7.D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.8.B【解析】
解:當直線過點時,最大,故選B9.C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.10.A【解析】
先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.本題主要考查函數(shù)的性質(zhì)應用,側(cè)重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).11.B【解析】
由已知向量的坐標,利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設與的夾角為,,由于向量夾角范圍為:,∴.故選:B.本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.12.B【解析】
可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.7【解析】
由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7本題主要考查二項式定理的應用,屬基礎題.14.【解析】
由可得集合是奇數(shù)集,由此可以得出結(jié)果.【詳解】解:因為所以集合中的元素為奇數(shù),所以.本題考查了集合的交集,解析出集合B中元素的性質(zhì)是本題解題的關鍵.15.24【解析】
先求出每地一名醫(yī)生,3名護士的選派方法的種數(shù),再減去甲乙兩名護士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護士的選派方法的種數(shù)有,若甲乙兩名護士到同一地的種數(shù)有,則甲乙兩名護士不到同一地的種數(shù)有.故答案為:.本題考查利用間接法求排列組合問題,正難則反,是基礎題.16.【解析】
設直線的方程為,與聯(lián)立得到A點坐標,由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:本題考查了雙曲線的離心率,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)1.【解析】
(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長a+b+c=5+7=1.本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.18.(1),拋物線;(2)存在,.【解析】
(1)設,易得,化簡即得;(2)利用導數(shù)幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數(shù)的關系即可解決.【詳解】(1)設,由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準線的拋物線.(2)不妨設.因為,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設直線m的方程為,代入并整理,得.首先,,解得或.其次,設,,則,..故存在直線m,使得,此時直線m的斜率的取值范圍為.本題考查直線與拋物線位置關系的應用,涉及拋物線中的存在性問題,考查學生的計算能力,是一道中檔題.19.(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關系,求函數(shù)導數(shù),要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗證,可得當時,對任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個極值點,,則須有有兩個不相等的正數(shù)根,所以或解得或無解,所以的取值范圍,可得,由題意知,令,則.而當時,,即,所以在上單調(diào)遞減,所以即時,.(Ⅲ)因為,.令得,.由(Ⅱ)知時,的對稱軸,,,所以.又,可得,此時,在上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減,所以最多只有三個不同的零點.又因為,所以在上遞增,即時,恒成立.根據(jù)(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個不同的零點:,1,.綜上所述,恰有三個不同的零點.【點睛】利用賦值法求出關系,利用函數(shù)導數(shù),研究函數(shù)的單調(diào)性,要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,利用函數(shù)的導數(shù)研究函數(shù)的單調(diào)性、極值,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù)是近年高考壓軸題的熱點.20.(Ⅰ)(Ⅱ)函數(shù)的定義域為,值域為【解析】
(1)由為第二象限角及的值,利用同角三角函數(shù)間的基本關系求出及的值,再代入中即可得到結(jié)果.(2)函數(shù)解析式利用二倍角和輔助角公式將化為一個角的正弦函數(shù),根據(jù)的范圍,即可得到函數(shù)值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數(shù)的定義域為.化簡,得,因為,且,,所以,所以.所以函數(shù)的值域為.(注:或許有人會認為“因為,所以”,其實不然,因為.)本題考查同角三角函數(shù)的基本關系式,三角函數(shù)函數(shù)值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數(shù)關系式的問題,意在考查學生的轉(zhuǎn)化能力和計算求解能力,屬于常考題型.21.(1);(2)的最小值為19.【解析】
(1)根據(jù)條件列方程組求出首項、公差,即可寫出等差數(shù)列的通項公式;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025【合同范本】財產(chǎn)分割協(xié)議
- 腳踝韌帶拉傷個案護理
- 2025年山東省棗莊市滕州市初中學業(yè)水平考試模擬試題(四)道德與法治試題
- 普通心理學(第2版)課件 第十四章 社會心理
- 2025年食品從業(yè)人員培訓試題
- 關于初中物理2024
- 《艾滋病小斗士》教學設計
- 護理管理計劃活動實施綱要
- 學校開展實驗室安全檢查工作總結(jié)模版
- 信用社新終總結(jié)模版
- 2025-2030白酒行業(yè)市場發(fā)展現(xiàn)狀及競爭形勢與投資前景研究報告
- 成人腸造口護理-中華護理學會團體標準
- 2025年湖北省初中學業(yè)水平考試地理模擬卷(三)(學生版)
- 園林綠化安全培訓課件
- DB14T 3231-2025安全風險分級管控和隱患排查治理雙重預防機制建設通則
- 腔隙性腦梗塞護理常規(guī)
- 2025年入團積極分子培訓考試題庫及答案
- 人工智能在價格預測中的應用-深度研究
- 《新聞傳播學》課件
- Unit 3 The world of Science 大單元教學設計-2023-2024學年高中英語外研版(2019)必修第三冊
- 延邊大學《物聯(lián)網(wǎng)技術1》2023-2024學年第二學期期末試卷
評論
0/150
提交評論