




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省兩校聯考2022-2023學年高三下學期期末考試試卷數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量服從正態分布,且,則()A. B. C. D.2.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數的圖象交于點Q,且該冪函數在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.3.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.4.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現從中摸出3個球(除顏色與編號外球沒有區別),則恰好不同時包含字母,,的概率為()A. B. C. D.5.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數為()A. B. C. D.6.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.7.函數的大致圖象為A. B.C. D.8.已知底面為邊長為的正方形,側棱長為的直四棱柱中,是上底面上的動點.給出以下四個結論中,正確的個數是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.9.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.10.已知為實數集,,,則()A. B. C. D.11.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.12.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,點P在直線上,過點P作圓C:的一條切線,切點為T.若,則的長是______.14.在棱長為的正方體中,是面對角線上兩個不同的動點.以下四個命題:①存在兩點,使;②存在兩點,使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.15.已知實數,滿足約束條件則的最大值為________.16.已知函數,曲線與直線相交,若存在相鄰兩個交點間的距離為,則可取到的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數().(1)討論函數的單調性;(2)若關于x的方程有唯一的實數解,求a的取值范圍.18.(12分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.19.(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.20.(12分)設,函數.(1)當時,求在內的極值;(2)設函數,當有兩個極值點時,總有,求實數的值.21.(12分)若關于的方程的兩根都大于2,求實數的取值范圍.22.(10分)設拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據在關于對稱的區間上概率相等的性質求解.【詳解】,,,.故選:C.【點睛】本題考查正態分布的應用.掌握正態曲線的性質是解題基礎.隨機變量服從正態分布,則.2.B【解析】
由已知可求出焦點坐標為,可求得冪函數為,設出切點通過導數求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點睛】本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數解析式,直線的斜率公式及導數的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.3.D【解析】
利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據二次函數的性質,求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數的最小值,屬于中檔題目.4.B【解析】
首先求出基本事件總數,則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點睛】本題考查了古典概型及其概率計算公式,考查了排列組合的知識,解答的關鍵在于正確理解題意,屬于基礎題.5.B【解析】
因為時針經過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經過2小時,時針所轉過的弧度數為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.6.D【解析】
連接,根據題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎題7.A【解析】
因為,所以函數是偶函數,排除B、D,又,排除C,故選A.8.C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最小(為下底面面對角線的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.【點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.9.A【解析】
令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.10.C【解析】
求出集合,,,由此能求出.【詳解】為實數集,,,或,.故選:.【點睛】本題考查交集、補集的求法,考查交集、補集的性質等基礎知識,考查運算求解能力,是基礎題.11.C【解析】
求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.12.D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出圖像,設點,根據已知可得,,且,可解出,計算即得.【詳解】如圖,設,圓心坐標為,可得,,,,,解得,,即的長是.故答案為:【點睛】本題考查直線與圓的位置關系,以及求平面兩點間的距離,運用了數形結合的思想.14.①③④【解析】
對于①中,當點與點重合,與點重合時,可判斷①正確;當點點與點重合,與直線所成的角最小為,可判定②不正確;根據平面將四面體可分成兩個底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個底面和在四個側面上的投影,均為定值,可判定④正確.【詳解】對于①中,當點與點重合,與點重合時,,所以①正確;對于②中,當點點與點重合,與直線所成的角最小,此時兩異面直線的夾角為,所以②不正確;對于③中,設平面兩條對角線交點為,可得平面,平面將四面體可分成兩個底面均為平面,高之和為的棱錐,所以四面體的體積一定是定值,所以③正確;對于④中,四面體在上下兩個底面上的投影是對角線互相垂直且對角線長度均為1的四邊形,其面積為定義,四面體在四個側面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,故四面體在該正方體六個面上的正投影的面積的和為定值,所以④正確.故答案為:①③④.【點睛】本題主要考查了以空間幾何體的結構特征為載體的謎題的真假判定及應用,其中解答中涉及到棱柱的集合特征,異面直線的關系和椎體的體積,以及投影的綜合應用,著重考查了推理與論證能力,屬于中檔試題.15.1【解析】
作出約束條件表示的可行域,轉化目標函數為,當目標函數經過點時,直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點的三角形及其內部,轉化目標函數為當目標函數經過點時,直線的截距最大此時取得最大值1.故答案為:1【點睛】本題考查了線性規劃問題,考查了學生轉化劃歸,數形結合,數學運算能力,屬于基礎題.16.4【解析】
由于曲線與直線相交,存在相鄰兩個交點間的距離為,所以函數的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點睛】此題考查正弦函數的圖像和性質的應用及三角方程的求解,熟練應用三角函數的圖像和性質是解題的關鍵,考查了推理能力和計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)當時,遞增區間時,無遞減區間,當時,遞增區間時,遞減區間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數只有一個實數解,根據(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區間時,無遞減區間,當時,遞增區間時,遞減區間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調遞增,且,函數只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數只有一個零點,原方程只有一個解,當且遞增區間時,遞減區間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導數的綜合應用,涉及到單調性、零點、極值最值,考查分類討論和等價轉化思想,屬于中檔題.18.(1)見解析;(2)【解析】
(1)設為中點,連結,先證明,可證得,假設不為線段的中點,可得平面,這與矛盾,即得證;(2)以為原點,以分別為軸建立空間直角坐標系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設為中點,連結.∴,,又平面,平面,∴.又分別為中點,,又,∴.假設不為線段的中點,則與是平面內內的相交直線,從而平面,這與矛盾,所以為線段的中點.(2)以為原點,由條件面面,∴,以分別為軸建立空間直角坐標系,則,,,,,,.設平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點睛】本題考查了立體幾何與空間向量綜合,考查了學生邏輯推理,空間想象,數學運算的能力,屬于中檔題.19.(1)(2)【解析】
(1)由正弦定理將,轉化,即,由余弦定理求得,再由平方關系得再求解.(2)由,得,結合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉化思想,屬于中檔題.20.(1)極大值是,無極小值;(2)【解析】
(1)當時,可求得,令,利用導數可判斷的單調性并得其零點,從而可得原函數的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數后轉化為求函數的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調遞減,又因為,故時,總有,所以在上單調遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025國企 面試題庫及答案
- 安全工程師建筑施工現場的安全文化傳播試題及答案
- 綠色環保2025年紙包裝產品行業環保材料研發與創新研究報告
- 注冊土木工程師考試的課程安排與復習科目試題及答案
- 舞蹈基本知識試題及答案
- 家具行業的市場細分策略與消費者心理分析研究試題及答案
- 電商種草經濟崛起下的內容營銷策略創新報告
- 小吃口味測試題及答案
- 金融行業大數據應用中的數據治理與隱私保護挑戰分析
- 冀中職業學院《中國俠客文化》2023-2024學年第一學期期末試卷
- 裝配鉗工(中級)試題庫
- 養老護理員職業技能等級認定三級(高級工)理論知識考核試卷
- 餐飲業消防安全管理制度
- 研發費用加計扣除政策執行指引(1.0版)
- GB/T 20647.9-2006社區服務指南第9部分:物業服務
- 海洋油氣開發生產簡介課件
- 重慶十八梯介紹(改)課件
- 一級病原微生物實驗室危害評估報告
- 設備機房出入登記表
- 起重吊裝作業審批表
- 最新三角形的特性優質課教學設計公開課教案
評論
0/150
提交評論