




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省杭州上城區七校聯考2025屆初三下學期開年考試數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B.C. D.2.函數y=自變量x的取值范圍是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤33.的相反數是()A. B.2 C. D.4.下列計算正確的是A. B. C. D.5.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關系是()A.相交 B.相切 C.相離 D.不能確定6.若正多邊形的一個內角是150°,則該正多邊形的邊數是()A.6B.12C.16D.187.《九章算術》是中國傳統數學的重要著作,方程術是它的最高成就.其中記載:今有共買物,人出八,盈三;人出七,不足四,問人數、物價各幾何?譯文:今有人合伙購物,每人出8錢,會多3錢;每人出7錢,又會差4錢,問人數、物價各是多少?設合伙人數為x人,物價為y錢,以下列出的方程組正確的是(
)A. B. C. D.8.PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質,也稱為可入肺顆粒物,將25微米用科學記數法可表示為()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣59.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中5個黑球,從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋中,攪勻后,再繼續摸出一球.以下是利用計算機模擬的摸球試驗次數與摸出黑球次數的列表:摸球試驗次數100100050001000050000100000摸出黑球次數46487250650082499650007根據列表,可以估計出m的值是()A.5 B.10 C.15 D.2010.下列函數中,二次函數是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=11.矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.12.如圖,函數y=kx+b(k≠0)與y=(m≠0)的圖象交于點A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.亞洲陸地面積約為4400萬平方千米,將44000000用科學記數法表示為_____.14.已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數).其中所有結論正確的是______(填寫番號).15.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.16.如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數y=的圖象經過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____________.17.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關于x的一元二次方程﹣x2+bx+c=0的解為_____.18.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.應用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數量關系為.(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數量關系為.20.(6分)如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區域的面積.(結果保留根號和π)21.(6分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長;(3)求sin∠EOB的值.22.(8分)如圖,已知△ABC內接于⊙O,BC交直徑AD于點E,過點C作AD的垂線交AB的延長線于點G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數;(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.23.(8分)已知關于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若m為非負整數,且該方程的根都是無理數,求m的值.24.(10分)解方程:2(x-3)=3x(x-3).25.(10分)某鄉鎮實施產業扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節,已知該蜜柚的成本價為8元/千克,投入市場銷售時,調查市場行情,發現該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數關系如圖所示.(1)求與的函數關系式,并寫出的取值范圍;(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?(3)某農戶今年共采摘蜜柚4800千克,該品種蜜柚的保質期為40天,根據(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.26.(12分)“母親節”前夕,某商店根據市場調查,用3000元購進第一批盒裝花,上市后很快售完,接著又用5000元購進第二批這種盒裝花.已知第二批所購花的盒數是第一批所購花盒數的2倍,且每盒花的進價比第一批的進價少5元.求第一批盒裝花每盒的進價是多少元?27.(12分)科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據介紹,這些機器人不僅可以自動規劃最優路線,將包裹準確地放入相應的格口,還會感應避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.(1)求兩種機器人每臺每小時各分揀多少件包裹;(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應購進A種機器人多少臺?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】分析:根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,即可判斷出答案.詳解:A、此圖形是中心對稱圖形,不是軸對稱圖形,故此選項正確;B、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;C、此圖形是中心對稱圖形,也是軸對稱圖形,故此選項錯誤;D、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤.故選A.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,關鍵是找出圖形的對稱中心與對稱軸.2、B【解析】由題意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故選B.3、D【解析】
因為-+=0,所以-的相反數是.故選D.4、C【解析】
根據同類項的定義、同底數冪的除法、單項式乘單項式法則和積的乘方逐一判斷即可.【詳解】、與不是同類項,不能合并,此選項錯誤;、,此選項錯誤;、,此選項正確;、,此選項錯誤.故選:.此題考查的是整式的運算,掌握同類項的定義、同底數冪的除法、單項式乘單項式法則和積的乘方是解決此題的關鍵.5、A【解析】試題分析:根據圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關系是相交.故選A.考點:直線與圓的位置關系.6、B【解析】設多邊形的邊數為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.7、C【解析】【分析】分析題意,根據“每人出8錢,會多3錢;每人出7錢,又會差4錢,”可分別列出方程.【詳解】設合伙人數為x人,物價為y錢,根據題意得故選C【點睛】本題考核知識點:列方程組解應用題.解題關鍵點:找出相等關系,列出方程.8、B【解析】
由科學計數法的概念表示出0.0000025即可.【詳解】0.0000025=2.5×10﹣6.故選B.本題主要考查科學計數法,熟記相關概念是解題關鍵.9、B【解析】
由概率公式可知摸出黑球的概率為5m,分析表格數據可知摸出黑球次數【詳解】解:分析表格數據可知摸出黑球次數摸球實驗次數的值總是在0.5左右,則由題意可得5故選擇B.本題考查了概率公式的應用.10、B【解析】A.y=-4x+5是一次函數,故此選項錯誤;B.
y=x(2x-3)=2x2-3x,是二次函數,故此選項正確;C.
y=(x+4)2?x2=8x+16,為一次函數,故此選項錯誤;D.
y=是組合函數,故此選項錯誤.故選B.11、C【解析】分析:延長GH交AD于點P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點睛:本題主要考查矩形的性質,解題的關鍵是掌握全等三角形的判定與性質、矩形的性質、勾股定理等知識點.12、B【解析】
根據函數的圖象和交點坐標即可求得結果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,
故選B.此題考查反比例函數與一次函數的交點問題,解題關鍵是注意掌握數形結合思想的應用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4.4×1【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.詳解:44000000=4.4×1,故答案為4.4×1.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14、③④⑤【解析】
根據函數圖象和二次函數的性質可以判斷題目中各個小題的結論是否成立,從而可以解答本題.【詳解】解:由圖象可得,拋物線開口向下,則a<0,拋物線與y軸交于正半軸,則c>0,對稱軸在y軸右側,則與a的符號相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①錯誤,
當x=-1時,y=a-b+c<0,得b>a+c,故②錯誤,
∵二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且-1<x1<0,對稱軸x=1,
∴x=2時的函數值與x=0的函數值相等,
∴x=2時,y=4a+2b+c>0,故③正確,
∵x=-1時,y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正確,
由圖象可知,x=1時,y取得最大值,此時y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正確,
故答案為:③④⑤.本題考查二次函數圖象與系數的關系、拋物線與x軸的交點坐標,解答本題的關鍵是明確題意,利用二次函數的性質和數形結合的思想解答.15、【解析】
因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關系是關鍵.16、﹣24【解析】分析:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點C的坐標為,這樣由點C在反比例函數的圖象上即可得到k=-24.詳解:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點C的坐標為,∵點C在反比例函數的圖象上,∴k=.故答案為:-24.點睛:本題的解題要點有兩點:(1)作出如圖所示的輔助線,設CF=4x,結合已知條件把OF和OA用含x的式子表達出來;(2)由四邊形AOCB是菱形,點D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.17、x1=1,x2=﹣1.【解析】
直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據拋物線的對稱性可以求得拋物線與x軸的另一交點坐標,從而求得關于x的一元二次方程﹣x2+bx+c=0的解.【詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.本題考查了二次函數與一元二次方程的關系.一元二次方程-x2+bx+c=0的解實質上是拋物線y=-x2+bx+c與x軸交點的橫坐標的值.18、120°【解析】
設扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°本題考查扇形的面積的計算,弧長公式等知識,解題的關鍵是掌握基本知識.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、探究:證明見解析;應用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結論;
應用:先算出BC,進而算出BD,再用勾股定理求出DE,即可得出結論;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
應用:在Rt△ABC中,AB=AC=,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根據勾股定理得,DE=,
∴△DCE的周長為CD+CE+DE=2+
故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE
∴BC=CD-BD=CD-CE,
故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案為BC=CE-CD.20、(1)證明見解析(2)﹣6π【解析】
(1)直接利用切線的判定方法結合圓心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S陰影=S△AED﹣S扇形COD,求出答案.【詳解】(1)證明:連接OD,∵D為弧BC的中點,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF為半圓O的切線;(2)解:連接OC與CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC為等邊三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=6,∴OD=DF?tan30°=6,在Rt△AED中,DA=6,∠CAD=30°,∴DE=DA?sin30°=3,EA=DA?cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO=DO,∴△COD是等邊三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S△ACD=S△COD,∴S陰影=S△AED﹣S扇形COD==.此題主要考查了切線的判定,圓周角定理,等邊三角形的判定與性質,解直角三角形及扇形面積求法等知識,得出S△ACD=S△COD是解題關鍵.21、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解析】
(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結論,根據圓周角定理可推出它們的對應角相等,即可得△AMC∽△EMB;
(2)根據圓周角定理,結合勾股定理,可以推出EC的長度,根據已知條件推出AM、BM的長度,然后結合(1)的結論,很容易就可求出EM的長度;
(3)過點E作EF⊥AB,垂足為點F,通過作輔助線,解直角三角形,結合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長度,根據銳角三角函數的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數,∴EC=7,∵M為OB的中點,∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過點E作EF⊥AB,垂足為點F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.本題考查了圓心角、弧、弦、弦心距的關系與相似三角形的判定與性質,解題的關鍵是熟練的掌握圓心角、弧、弦、弦心距的關系與相似三角形的判定與性質.22、(1)48°(1)證明見解析(3)【解析】
(1)連接CD,根據圓周角定理和垂直的定義可得結論;
(1)先根據等腰三角形的性質得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對的圓周角相等,根據同弧所對的圓周角和圓心角的關系可得結論;
(3)過O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設OF=a,則OA=OC=1x-a,根據勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)過O作OG⊥AB于G,設CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,設OF=a,則OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.圓的綜合題,考查了三角形的面積、垂徑定理、角平分線的性質、三角形全等的性質和判定以及解直角三角形,解題的關鍵是:(1)根據圓周角定理找出∠ACB+∠BCD=90°;(1)根據外角的性質和圓的性質得:;(3)利用三角函數設未知數,根據勾股定理列方程解決問題.23、(1)m<2;(2)m=1.【解析】
(1)利用方程有兩個不相等的實數根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
(2)先利用m的范圍得到m=3或m=1,再分別求出m=3和m=1時方程的根,然后根據根的情況確定滿足條件的m的值.【詳解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有兩個不相等的實數根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m為非負整數,∴m=3或m=1,當m=3時,原方程為x2-2x-3=3,解得x1=3,x2=﹣1(不符合題意舍去),當m=1時,原方程為x2﹣2=3,解得x1=,x2=﹣,綜上所述,m=1.本題考查了根的判別式:一元二次方程ax2+bx+c=3(a≠3)的根與△=b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三基三嚴模擬試題含答案
- 2025屆吉林省長春十一中高三第二次診斷性檢測英語試卷含答案
- 作業車司機高級工技能鑒定測試題及答案
- 2025屆甘肅省武威市第一中高考英語全真模擬密押卷含答案
- 2025年四川省宜賓市第二中學校九年級二診考試數學試題(原卷版+解析版)
- 河南省開封市五校2024-2025學年高二下學期4月期中地理試題(原卷版+解析版)
- 電視機制造業的生產計劃與庫存控制考核試卷
- 電子出版物的技術標準與兼容性考核試卷
- 稀土金屬釬焊工藝考核試卷
- 纖維板成型技術考核試卷
- 2025新人教版英語七年級下不規則動詞表
- 醫保服務協議培訓
- 大學英語(二)知到智慧樹章節測試課后答案2024年秋海南經貿職業技術學院
- 2025年四川宜賓市翠屏區考調事業單位工作人員13人歷年高頻重點提升(共500題)附帶答案詳解
- 建材行業購銷合同范本
- 小學生憲法宣講課件
- 《汽車專業英語》2024年課程標準(含課程思政設計)
- 衛生間翻新施工方案
- 小學數學二年級第二學期口算計算共3031道題
- 專題04 水和溶液(解析版)
- 網絡安全知識基礎培訓課件
評論
0/150
提交評論