




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省衡陽(yáng)縣創(chuàng)新實(shí)驗(yàn)班2022-2023學(xué)年高三下學(xué)期期末考試數(shù)學(xué)試題理試題(B卷)考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,則=()A. B. C. D.2.已知橢圓的右焦點(diǎn)為F,左頂點(diǎn)為A,點(diǎn)P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.3.已知集合,,,則集合()A. B. C. D.4.若為純虛數(shù),則z=()A. B.6i C. D.205.若復(fù)數(shù)滿(mǎn)足,其中為虛數(shù)單位,是的共軛復(fù)數(shù),則復(fù)數(shù)()A. B. C.4 D.56.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米7.已知向量,,則向量與的夾角為()A. B. C. D.8.給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,則這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④9.下列說(shuō)法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題10.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.211.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.312.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個(gè)算法的偽代碼,運(yùn)行后輸出的值為_(kāi)__________.14.已知是等比數(shù)列,且,,則__________,的最大值為_(kāi)_________.15.已知定義在上的函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),,若函數(shù)圖象與函數(shù)圖象的交點(diǎn)為,則_____.16.已知,則_____。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè),函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點(diǎn);②求證:對(duì)任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的坐標(biāo).19.(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)求證:(,且).20.(12分)如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn).(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點(diǎn),滿(mǎn)足,求二面角的余弦值.21.(12分)已知函數(shù),.(1)若不等式對(duì)恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實(shí)根為.令若存在,,,使得,證明:.22.(10分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)A.B,求AB的長(zhǎng);(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
先求出集合A,B,再求集合B的補(bǔ)集,然后求【詳解】,所以.故選:D【點(diǎn)睛】此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.2.C【解析】
不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力.3.D【解析】
根據(jù)集合的混合運(yùn)算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點(diǎn)睛】本題考查集合的混合運(yùn)算,屬基礎(chǔ)題.4.C【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時(shí)故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.5.D【解析】
根據(jù)復(fù)數(shù)的四則運(yùn)算法則先求出復(fù)數(shù)z,再計(jì)算它的模長(zhǎng).【詳解】解:復(fù)數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的計(jì)算問(wèn)題,要求熟練掌握復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)長(zhǎng)度的計(jì)算公式,是基礎(chǔ)題.6.B【解析】
由于實(shí)際問(wèn)題中扇形弧長(zhǎng)較小,可將導(dǎo)線的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線長(zhǎng)度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.7.C【解析】
求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時(shí),通常代入公式進(jìn)行計(jì)算.8.D【解析】
利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對(duì)四個(gè)命題分別分析進(jìn)行選擇.【詳解】當(dāng)兩個(gè)平面相交時(shí),一個(gè)平面內(nèi)的兩條直線也可以平行于另一個(gè)平面,故①錯(cuò)誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯(cuò)誤;若兩個(gè)平面垂直,只有在一個(gè)平面內(nèi)與它們的交線垂直的直線才與另一個(gè)平面垂直,故④正確.綜上,真命題是②④.故選:D【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,是中檔題.9.D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.10.A【解析】
求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.11.A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時(shí)解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡(jiǎn)單題.12.A【解析】
由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13.13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿(mǎn)足條件,故得到此時(shí)輸出的b值為13.故答案為13.14.5【解析】,即的最大值為15.4038.【解析】
由函數(shù)圖象的對(duì)稱(chēng)性得:函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),則,,即,得解.【詳解】由知:得函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)又函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)則函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng)則故,即本題正確結(jié)果:【點(diǎn)睛】本題考查利用函數(shù)圖象的對(duì)稱(chēng)性來(lái)求值的問(wèn)題,關(guān)鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對(duì)稱(chēng)中心,屬中檔題.16.【解析】
由已知求,再利用和角正切公式,求得,【詳解】因?yàn)樗詂os因此.【點(diǎn)睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)①函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明見(jiàn)解析;(2)且;【解析】
(1)①令,結(jié)合函數(shù)零點(diǎn)的判定定理判斷即可;②設(shè)切點(diǎn)橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過(guò)討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當(dāng)時(shí),函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點(diǎn),故函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明:假設(shè)存在,使得直線是曲線的切線,切點(diǎn)橫坐標(biāo)為,且,則切線在點(diǎn)切線方程為,即,從而,且,消去,得,故滿(mǎn)足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時(shí),故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當(dāng)時(shí),遞減,故當(dāng)時(shí),,遞增,當(dāng)時(shí),,遞減,故在處取得極大值,不合題意;時(shí),則在遞減,在,遞增,①當(dāng)時(shí),,故在遞減,可得當(dāng)時(shí),,當(dāng)時(shí),,,易證,令,,令,故,則,故在遞增,則,即時(shí),,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時(shí),,遞增,不合題意;③當(dāng)時(shí),,當(dāng),時(shí),,遞減,當(dāng)時(shí),,遞增,故在處取極小值,符合題意,綜上,實(shí)數(shù)的范圍是且.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,轉(zhuǎn)化思想,屬于難題.18.(1);(2)最小值為,此時(shí)【解析】
(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標(biāo)和直角坐標(biāo)相互轉(zhuǎn)化公式,求得曲線的直角坐標(biāo)方程.(2)設(shè)出的坐標(biāo),結(jié)合點(diǎn)到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標(biāo)方程是(2)設(shè),的最小值就是點(diǎn)到直線的最小距離.設(shè)在時(shí),,是最小值,此時(shí),所以,所求最小值為,此時(shí)【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,考查利用圓錐曲線的參數(shù)求最值,屬于中檔題.19.(1)1;(2)見(jiàn)解析【解析】
(1)分別求得與的導(dǎo)函數(shù),由導(dǎo)函數(shù)與單調(diào)性關(guān)系即可求得的值;(2)由(1)可知當(dāng)時(shí),,當(dāng)時(shí),,因而,構(gòu)造,由對(duì)數(shù)運(yùn)算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調(diào)遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調(diào)遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當(dāng)時(shí),函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當(dāng)時(shí),,當(dāng)時(shí),.∴∴即,∴.【點(diǎn)睛】本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,放縮法在證明不等式中的應(yīng)用,屬于難題.20.(1)證明見(jiàn)解析(2)(3)【解析】
(1)根據(jù)題意以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),并表示出,由空間向量數(shù)量積運(yùn)算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點(diǎn)在棱上,設(shè),再由,結(jié)合,由空間向量垂直的坐標(biāo)關(guān)系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運(yùn)算求得兩個(gè)平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,∵,,點(diǎn)為棱的中點(diǎn).∴,,,,,,.(2),設(shè)平面的法向量為.則,代入可得,令解得,即,設(shè)直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點(diǎn)在棱上,設(shè),故,由,得,解得,即,設(shè)平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿(mǎn)足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點(diǎn)睛】本題考查了空間向量的綜合應(yīng)用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計(jì)算量較大,屬于中檔題.21.(1)(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解析】
(1)由題意可得,,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進(jìn)而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進(jìn)而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡(jiǎn)可得.令,,因?yàn)?,所以?所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設(shè),則.在上,,所以在上單調(diào)遞減.在上,,所以在上單調(diào)遞增,所以.設(shè),因?yàn)樵谏鲜菧p函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實(shí)根為,即,要證,由可知,即要證.當(dāng)時(shí),,,因而在上單調(diào)遞增.當(dāng)時(shí),,,因而在上單調(diào)遞減.因?yàn)椋?,要證.即要證.記,.因?yàn)?,所以,則..設(shè),,當(dāng)時(shí),.時(shí),,故.且,故,因?yàn)椋?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工企業(yè)裝配式建筑技術(shù)采納意愿影響因素及組態(tài)路徑研究
- 教育行業(yè)內(nèi)的師徒互助計(jì)劃
- 2025年小學(xué)圖書(shū)室評(píng)估與反饋計(jì)劃
- 《自然選擇理論的核心觀點(diǎn):高中生物教學(xué)教案》
- 電力工程工期確保方案
- 小學(xué)傳染病防治工作領(lǐng)導(dǎo)小組及職責(zé)
- 童話(huà)世界,人間天堂550字15篇
- 五年級(jí)下學(xué)期語(yǔ)文學(xué)習(xí)反饋計(jì)劃
- 可持續(xù)發(fā)展與環(huán)保行業(yè)案例
- 農(nóng)業(yè)智能種植區(qū)自動(dòng)化生產(chǎn)與運(yùn)營(yíng)方案
- 創(chuàng)新創(chuàng)業(yè)教育的課程設(shè)計(jì)與實(shí)施研究
- JGT368-2012鋼筋桁架樓承板規(guī)范
- 燃?xì)庑袠I(yè)的數(shù)字化轉(zhuǎn)型
- 新整理校園話(huà)劇!紀(jì)念偉大愛(ài)國(guó)詩(shī)人的話(huà)劇劇本《屈原》
- 馬克思主義基本原理介紹課件
- 刑事附帶民事授權(quán)委托書(shū)(6篇)
- 23CG60 預(yù)制樁樁頂機(jī)械連接(螺絲緊固式)
- 自殺風(fēng)險(xiǎn)的評(píng)估與記錄-生
- 廉潔心得體會(huì)500字(5篇)
- 30th燃煤蒸汽鍋爐煙氣除塵脫硫系統(tǒng)設(shè)計(jì)畢業(yè)設(shè)計(jì)
- 初中音樂(lè)-歌曲《天之大》教學(xué)課件設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論