




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
FinancialServicesintheEraofGenerativeAI
FacilitatingResponsibleAdoption
April2025
HongKongInstituteforMonetaryandFinancialResearchHKIMRAppliedResearchReportNo.1/2025
Contents
Pages
Foreword2
Acknowledgements3
ExecutiveSummary4
Chapter1GenerativeArtificialIntelligence:AnOverview6
Evolution,keytechnicalbreakthroughs,andimplicationsforthefinancialservicesindustry
Chapter2
ImplicationsforFinancialServicesIndustryRiskManagementandTalentStrategies
18
Theimportanceofriskmanagementandtalent
Chapter3
InsightsfromMarketParticipantsinHongKong
31
GenA.I.adoptioninthefinancialservicesindustry
Chapter4
TheRoleofRegulation
45
Theinternationalandlocalexperience
Chapter5
ConsiderationsForFosteringResponsibleGenA.I.adoptioninHongKong
55
Thescopeforfurtherfacilitationandcooperation
Conclusions63
AppendixA:BackgroundoftheGenA.I.Survey64
AppendixB:GlossaryofTechnicalTerms66
AppendixC:References70
Foreword
GenerativeArtificialIntelligence(GenA.I.),arapidlyevolvingtechnologyinitsearlystagesofdevelopmentandadoption,representsthelatestevolutioninArtificialIntelligence(AI).GloballyandinHongKong,financialinstitutionsareswiftlyexploringGenA.I.’scapabilities,withmanypromisingusecasesemerging.
Inthefinancialservicesindustry,GenA.I.applicationshavethepotentialtoleadtomorecuratedcustomerexperience,andmoreefficientwaysofprocessingandutilisingdigitalinformation.However,theadoptionofGenA.I.couldalsogiverisetonewrisksandchallenges.ThissuggeststhatamidstacceleratedGenA.I.innovation,itsadoptionrequiresacriticalfocusonsafety,trustandintegrity.InHongKong,authoritieshavebeguntoupdateregulatoryguidelinesandtolaunchinitiativesinsupportofresponsibleGenA.I.adoptionandinnovation.
Motivatedbyrecentdevelopments,thisreportprovidesacomprehensiveoverviewoftheevolutionofGenA.I.anditsbroaderimplicationsforboththefinancialservicesindustryandfinancialregulators.ThereportdrawsonthefindingsfromasurveyandinterviewscommissionedbytheHongKongInstituteforMonetaryandFinancialResearch,whichgatheredtheviewsofmarketparticipantsonthecurrentstateofGenA.I.adoptionamonglocalfinancialinstitutions,theexpectedtrajectoryofGenA.I.developmentinHongKong,andthestrategiesemployedforriskmanagementandtalentdevelopment.
ThereportfindsthattheadoptionofGenA.I.isprogressingsteadilyacrossthefinancialservicesindustryinHongKong.However,therearechallengeshinderingadoption,includingconcernsregardingmodelaccuracy,dataprivacyandsecurity,aswellasconstraintsrelatedtoresourcesandtalent.Theemergenceoflessresource-intensivemodelsandmaturingtechnology,coupledwithregulatoryengagement,islikelytocontributetothebroadeningofGenA.I.adoptionovertime.Basedonthesefindings,thereportoutlinessomeconsiderationsaimedatfacilitatingresponsibleGenA.I.adoptionbythefinancialservicesindustryinHongKong.
WehopethefindingsofthisreportcanhelpinformbestpracticesforaddressingGenA.I.adoptionchallengesinthefinancialservicesindustry,andcontributetodiscussionsonresponsibleinnovationandadoption,aswellasindustry-widecapacitybuilding.Lookingahead,withmaturingGenA.I.technologyandevolvingregulationanticipatedtosupportabroadeningofGenA.I.’sapplicationtoawiderspectrumofactivities,furtherresearchmayalsobewarrantedtounderstandthepotentialforGenA.I.tosupportRegTech,SupTech,andthebroaderpolicysetting.
MrEnochFung
ChiefExecutiveOfficer
HongKongAcademyofFinance
ExecutiveDirector
HongKongInstituteforMonetaryandFinancialResearch
2FinancialServicesintheEraofGenerativeAI
Acknowledgements
WethanktheInsuranceAuthority,MandatoryProvidentFundSchemesAuthority,SecuritiesandFuturesCommission,aswellastheBankingConductDepartment,theBankingPolicyDepartment,theBankingSupervisionDepartmentandtheDigitalFinanceDivisionoftheHongKongMonetaryAuthorityfortheirvaluablecommentsandsuggestions.WearealsogratefulforourcollaborationwithErnst&YoungAdvisoryServicesLimitedindesigningandadministeringasurvey,titledFinancialServicesintheEraofGenerativeArtificialIntelligence:OpportunitiesandRiskManagement,fromOctober2024toJanuary2025,andinconductinginterviewswithvariousmarketparticipants,includingbanks,insurers,andassetandwealthmanagers,aswellasGenA.I.
serviceproviders.Finally,wethanktheHongKongInstituteforMonetaryandFinancialResearchCouncilofAdvisersforAppliedResearchfortheircontinuingsupportandguidancerelatedtotheInstitute’sresearchactivities.
HongKongInstituteforMonetaryandFinancialResearch?April20253
4FinancialServicesintheEraofGenerativeAI
ExecutiveSummary
GenerativeArtificialIntelligence(GenA.I.),arapidlyevolvingtechnologyinitsearlystagesofdevelopmentandadoption,representsthelatestevolutioninArtificialIntelligence(AI).GenA.I.modelscanlearnfromthepatternsandstructuresoftheirtrainingdatatogenerateoutputswithsimilarcharacteristics,beittext,images,audio,orvideo.GenA.I.’skeyattributesofaccessbiilty,versatility,andadaptabiitythusbroadensthepotentialtoautomate,innovate,andenhanceproductivityinthefinancialservicesindustry.
TheadoptionofGenA.I.isprogressingsteadilyacrossthefinancialservicesindustryinHongKong.
75%ofthesurveyedfinancialinstitutionshavealreadyimplementedatleastoneGenA.I.usecase,orarecurrentlypilotinganddesigningusecases,andexploringpotentialinvestmentareas.Thisratioisexpectedtoincreaseto87%withinthenextthreetofiveyears.
GenA.I.adoptionhasbeensomewhathigheramongthelargersurveyedfinancialinstitutions.Amongsurveyedfirms,83%oflargefirmshaverolledoutatleastoneGenA.I.usecaseoraretakingstepstowardsadoption,comparedto63%ofsmallfirms.LargerfirmsweretypicallymoreadvancedintheirGenA.I.adoptionandgeneralpreparedness,whilesmallerfirmswithcomparativelylessresourcesfacedgreateradoptionhurdles.
TheprimaryimplementationsofGenA.I.infinancialservicesremainlargelyinternalandnon-customerfacing.75%ofthesurveyedfinancialinstitutionsviewedGenA.I.asatooltoenhanceproductivityandoperationalefficiency,followedby53%whoviewedGenA.I.asempowermentforinnovationanddecision-making.ThemostcommonGenA.I.usecasesarevirtualassistantsforemployees,withGenA.I.useincomplex,higher-risk,andexternalcustomer-facingapplicationsdependentonfurtherimprovementsintheaccuracyofthetechnology.
Thereareanumberofriskmanagementchallengeshinderingadoption,includingconcernsregardingmodelaccuracy,dataprivacyandsecurity,aswellasconstraintsrelatedtoresourcesandtalent.
WhenadoptingGenA.I.,financialinstitutionsconsideredmodelperformanceandaccuracy(highlightedby95%ofsurveyedfirms),modeltransparencyandexplainability(65%),anddataprivacyandsecurity(64%)asthetopthreerisk-managementconsiderations.
Tostrengthenriskmanagement,financialinstitutionsinHongKonghavemadesolidfirststepstowardsresponsibleGenA.I.adoptionanddevelopment,supportedbyupdatedregulatoryguidelines.ThereisaclearprioritisationoftransparencyandaccountabilityinGenA.I.tools,alongsideastrongemphasisondataprotectionandsafeguardingcustomerinformation.Ongoingdatamonitoringandgovernanceofmodeloutputs,andenhancingdataqualitycontrolsandchecks,werecommonpriorityareasidentifiedforimprovement.GenA.I.-relatedcybersecurityawarenesstrainingandregularsecurityassessmentstoidentifyvulnerabilitiesarealsobeingintroduced.
A‘human-in-the-loop’approachisalsoconsiderednecessarytoensureproperriskmanagementandcontrols,especiallyatthisstageofGenA.I.technologymaturity.Consistentwiththisapproach,about80%ofthesurveyedfinancialinstitutionsidentifiedtechnicalskillsrequiredintheuseanddevelopmentofGenA.I.assomeofthetopskillsgapsfacedbytheindustry.60%ofsurveyrespondentsalsohighlightedcomplianceskillsasakeyskillsgapinsupportingGenA.I.initiatives.
Reskillingandupskillingappearstobeacorepartoffinancialinstitutions’talentstrategy.Tohelpbridgeskillsgaps,thesurveyedfinancialinstitutionsareoptingforacombinationof
HongKongInstituteforMonetaryandFinancialResearch?April20255
ExecutiveSummary
upskillingexistingemployees,hiringnewtalent,andestablishingexternalpartnerships,especiallywithGenA.I.serviceproviders.Thereisalsoanemphasisoncontinuouslearningandinnovationandonupskillingexistingdataandtechnologyteamsinareasofdatascience,cloudcomputingandbusinessanalytics.
Theemergenceoflessresource-intensivemodelsandmaturingtechnology,coupledwithregulatoryengagement,arelikelytocontributetothebroadeningofGenA.I.adoptionovertime.Therecentemergenceoflessresource-intensivemodels,suchasDeepSeek-R1,ischallengingtheprevalentviewthatscalingGenA.I.requiresvastcomputingpowerandinvestment.Newapproachestolanguagemodellingarealsoimprovingmodelaccuracyandgeneralperformance.ThetrajectoryofthesedevelopmentsshouldsupportabroadeningofGenA.I.useovertime.
InrecognitionofthetransformativepotentialofGenA.I.,andtofacilitateresponsibleadoption,theregulatoryandpolicylandscapeofAIregulationhasbeenanevolvingprocessacrossjurisdictionsworldwide.Regulatorsgloballyhavebegunre-examiningtheirregulatoryframeworksgoverningAIdevelopmentandadoption.MultilateraldiscussionsamongglobalpolicymakersarealsounderwaytounderstandthepotentialimplicationsofGenA.I.adoptionforfinancialstabilityandmarketintegrity.
Althoughjurisdiction-specificregulatoryframeworksarecurrentlydiverseintermsofthedegreeofcodification,industrycoverage,andsandboxingandfacilitation,thesecontinuetobeguidedbyanendgoaloffacilitatingresponsibleadoption,andbalancingbetweeninnovationandsafety.Achievinggreatercross-jurisdictionharmonisationovertimecanhelpreducethecostsofcompliance
forfinancialinstitutions,especiallythosewithasubstantialglobalfootprint,aswellashelppreventregulatoryarbitrage.
Basedonthesefindings,thereportoutlinessomeconsiderationsforfacilitatingresponsibleGenA.I.adoptionbythefinancialservicesindustryinHongKong.TheHongKonggovernmentandfinancialauthoritieshavebeenactiveinundertakingamulti-prongedapproachinsupportingresponsibleGenA.I.adoptionanddevelopment,withthereleaseofpolicystatements,regulatorycircularsandguidelinessurroundingtheuseofGenA.I.,andthelaunchoffacilitationmeasuressuchastheHongKongMonetaryAuthority(HKMA)andCyberportGenA.I.SandboxforbanksandtheCyberportAISupercomputingCentre.
Inthenear-term,continuedadjustmentsoffinancialinstitutions’riskmanagementframeworkstoalignwithbestpracticescanfosterfurtheradoption.Expandingthescopeoffacilitationmeasures,aswellassupportingtechnologyandimplementationinfrastructure,canalsofacilitateresponsibleGenA.I.adoptionandspurinnovationanddevelopment.
Inthemedium-term,surveyandinterviewssuggestgreatercollaborationamongregulators,industryplayersanddevelopers,cross-jurisdictionregulatoryengagement,andsustainedlong-terminvestmentindigitalinfrastructurearecrucialasGenA.I.adoptionbroadens.
Thesurveyedfinancialinstitutionsviewedthedevelopmentofmoreadvancedusecasesandapplicationsasthetopareawhereindustry-regulator-developercooperativegainsaremostlikelytooccur,followedbytalentdevelopment,enhancedpublicunderstanding,andinfrastructure.
Chapter1
GenerativeArtificialIntelligence:AnOverview
HIGHLIGHTS:
?GenA.I.’skeyattributesofaccessibility,versatility,andadaptabilitybroadensthepotentialtoautomate,innovate,andenhanceproductivityinthefinancialservicesindustry.Byautomatinglabour-intensivetasksandaugmentingworkersincognitivetasks,GenA.I.canalsofreeuphumancapitalforstrategicplanning.
?However,similartoothertechnologicaladvancementsintheearlystagesofdevelopmentandadoption,GenA.I.alsointroducespotentialrisksthatposechallengesforfinancialinstitutionsasprospectiveend-users,andforfinancialauthoritiesthroughtheimplicationsforfinancialstability,andconsumerandinvestorprotection.
?ResponsibleGenA.I.adoptionthusrequiresfinancialinstitutionstoconsidertherobustnessoftheirriskmanagementandtalentstrategies.Financialregulationisalsoanticipatedtobeadynamicprocess,owingtothenascentnatureofthetechnology,andthespeedandbreadthoftheintegrationofGenA.I.intothefinancialservicesindustry.
HongKongInstituteforMonetaryandFinancialResearch?April20257
Chapter1:GenerativeArtificialIntelligence:AnOverview
GenerativeArtificialIntelligence(GenA.I.),arapidlyevolvingtechnologyinitsearlystagesofdevelopmentandadoption,representsthelatestevolutioninArtificialIntelligence(AI).Itsdevelopmenthasbeenunderpinnedbyadvancementsincomputingpowerandefficiency,breakthroughsindeepmachinelearningarchitecture,andtheavailabilityoflargedatasetsthathavefacilitatedthetrainingofcomplexfoundationmodels.GenA.I.modelscanlearnfromthepatternsandstructuresoftheirtrainingdatato‘generate’outputswithsimilarcharacteristics,beittext,images,audio,orvideo.GloballyandinHongKong,financialinstitutionsareswiftlyexploringGenA.I.’scapabilities,withmanypromisingusecasesemerging1.ThischapterprovidesanoverviewofGenA.I.,includingthekeymilestonesandtechnicalbreakthroughs,itskeyattributesandrisksfeatures,anditsbroaderimplicationsforboththefinancialservicesindustryandfinancialauthorities.
Chapter1
1.1ABRIEFHISTORYOFAI
ThebirthofAI
AIisintelligenceexhibitedbymachinesandtheabilityofmachinestoperformtaskscommonlyassociatedwithhumanintelligence.Theinventionoftheprogrammableelectroniccomputeratthebeginningofthe20thcenturyfirstpromptedseriousconsiderationofAIanditspossibilities.Sincethen,AIresearchhasprogressedthroughanumberofdistinctdevelopmentalparadigms2,inareflectionofbothshiftsinAIideologyandthegradualadvancementofthetechnology(Figure1.1).
Figure1.1:MajorstagesinAIdevelopment
ANNsand
DeepLearning(2000s-2010s)
MachineLearning (1990s)
GenA.I.
(2020s)
Rule-based
AISystems
(1950s-1980s)
Source:HKIMRstaffcompilation.
InitialAIresearchwasfocusedonhowtoencodelogicreasoningintomachines,andthedesignofAIsystemsthatfollowspecificrulesandperformwell-definedtasks3.Oneofthefirstnaturallanguageprocessing(NLP)chatbots,ELIZA,wasdevelopedduringthisperiod.Althoughthisperiod
culminatedinthearrivalofexpertsystemsthatemulatetheknowledgeandreasoningabilitiesofhumanexpertsinspecificdomainsrequiringnarrowbutdeepknowledge,thedifficultyofsuchrule-basedAIsystemsinhandlingambiguousandnoisydata4ultimatelylimitedanyreal-worldapplicationsandadoption.
1Mckinsey&Company(2023).
2EuropeanCommission(2020).
3TwoattendeesoftheDartmouthSummerResearchProjectonArtificialIntelligence,HerbertSimonandAllenNewell,proposedmorespecificallythathumanmindsandmoderndigitalcomputerswere‘speciesofthesamegenus,’namelysymbolicinformationprocessingsystems–bothtakesymbolicinformationasinput,manipulateitaccordingtoasetofformalrules,andinsodoingcansolveproblems,formulatejudgements,andmakedecisions.
4Thetranslationofhumanknowledgeintologicalrulestosolveevermorecomplexreal-worldproblemsprovedcomputationallyexpensiveandimpractical,contributingto‘knowledgebottlenecks’.
Chapter1:GenerativeArtificialIntelligence:AnOverview
Machinelearning
Fromthe1990sonwards,steadyadvancesincomputationalpowertotrainandrunAImodelsandprogressinmachinelearning(ML)algorithmsthatleveragestatisticaltechniquestoprocessinformationbegantosupportbetterpredictionsanddecision-makingbasedonhistoricaldata.Theuseofbackpropagation,aniterativealgorithmthathelpstominimisethecostfunctionbydeterminingwhichweightsandbiasesshouldbeadjustedbymovingdownthegradientoftheerror,alsoexperiencedaresurgenceoverthisperiod.Byenablingmoreefficienttraining,backpropagationhelpedtoinspiretherenaissanceandinterestinartificialneuralnetworksinAIresearch.Asaresult,MLdefinitivelyshiftedfromarule-basedknowledge-drivenapproachtoadata-drivenapproach.
Artificialneuralnetworks(ANNs)
Artificialneuralnetworks5,withtheirtopologyofinterconnectedfunctions(‘neuralnodes’),aimtosimulatethewayneuronsinthehumanbraindecipherinformationandsignaltooneanother,andaretrainedtorecognisepatternsand
inferrulesthroughprocessinglargeamountsofinputdataacrosssuccessiveand‘hidden’neuralnetworklayers(Figure1.2).TheintegrationofMLalgorithmsintothistypeofAImodelarchitectureenabledthemodeltolearnmathematicallycomplexrelationshipsbetweendatapointsthroughnumerousiterations,andhasgreatlyexpandedthepotentialforAIinreal-worldapplicationsandadoption.
Ineachlayer,theweightsoftheneuralnodesareadjustedthroughtheapplicationofstatisticalmethodstoprioritisethoseinputdatafromprecedingnodesthatcontributetoimprovingthedesiredoutput,untilthebestfittingmodelthatminimisesthecumulativeerrorfromallthetrainingdatapointsisfound.Oncetrained,neuralnetworksarefurthercalibratedandvalidatedtominimiseerroronapreviously‘unseen’segmentoftheinputdataset(the‘testdata’),toimprovetheirrobustnesstonoise.Thetrainedandvalidatedneuralnetworkmodelcanthenbeusedtointerpretnewinputsandmakedecisionsorpredictions.Themorelayersandinterconnectedneuronsperlayeraneuralnetworkhas,thelargerandmorediversethetrainingdataandcomputingpoweritrequires.
Chapter1
Figure1.2:Anexampleschematicoftheworkingofartificialneuralnetworks
Input1
Input2
Input3
InputN
InputlayerHiddenlayersOutputlayer
Output
Source:HKIMRstaffcompilation.
5Artificialneuralnetworkswerefirstproposedin1943byWarrenMcCulloughandWalterPittsfromtheUniversityofChicago,withthepublicationofthefirstmathematicalmodellingofaneuralnetworkandhowitmightperformsimplelogicalfunctions.Thefirsttrainableneuralnetwork,thePerceptron,wasdemonstratedbyCornellUniversitypsychologistFrankRosenblattin1957.
8FinancialServicesintheEraofGenerativeAI
Chapter1:GenerativeArtificialIntelligence:AnOverview
HongKongInstituteforMonetaryandFinancialResearch?April20259
Deeplearning
Theabilityofneuralnetworkstotakeonadditionallayershasimprovedovertimethroughnewtrainingtechniques6.However,itwastheintegrationofhigh-performancegraphicsprocessingunits(GPUs)andthusmoreefficientparallelprocessing7,aswellasadditionalaccessto‘bigdata’setsthroughcloudservices,thatreallyfacilitatedthetrainingandrunningofmulti-layered(‘deep’)neuralnetworks.Greatercomputationalpoweralsosupportedmoresophisticatedlearningapproaches,expandingthetypeofdatausedtotrainthealgorithms,whilereducingthedegree
Chapter1
ofhumaninterventionandincreasingin-modelfeedback(Figure1.3).Inrecentyears,deeplearninghascometounderpintheAIsystemsbehindnearlyallhigh-performingpredictiveandprescriptiveAIapplications,fromforecastingandfrauddetectiontooptimisationandlogistics.Today,large-scaleAIsystemscanhavehundredsoreventhousandsofhiddenneuralnetworklayersthatmimicthecomplexdecision-makingpowersofthehumanbrain,andexcelatthetypeofreal-worldtasksthatearlierrule-basedAIsystemsstruggledwith.
Figure1.3:Comparisonofdeeplearningapproaches
Inputdata
(states&actions)
Inputdata
(unlabelled)
Inputdata
(labelled)
UnsupervisedLearning
SupervisedLearning
ReinforcementLearning
Error
Error
Reinforcementsignal
Critic
Output
OutputCritic
Output
(mapping)(classes)(state/action)
Sources:IBMandHKIMRstaffcompilation.
TheeraofGenA.I.
EvolutioninGenA.I.hasmirroredtheevolutioninbroaderAIresearch.TherewasearlyGenA.I.experimentationwithstatisticalmodelsforspeechrecognitioninthe1950sandsomesuccessinlanguagemodellingtasksbythelate1980s8.However,GenA.I.applicationsforalongtimestruggledtomovebeyondsimpledetectiontothe
efficientgenerationofhigh-qualityanddiversenewcontent.ThisreflectstheevenhigherdemandofGenA.I.thantraditionalAIforlargeanddiversetrainingdatasetsthatcanadequatelycapturetheintricaciesandvariationspresentintherealworld9,andforcomputationalpowerthatcantrainandoperatethecomplexintegratedalgorithmsoflarge-scalefoundationmodels10.
6Theinventionofthe‘greedylayer-wisepre-training’techniquein2006allowedeachlayerofaneuralnetworktobetrainedindividually,therebyreducingtheaggregateamountoftrainingtime.
7GPUs,originallydesignedforuseincomputergames,packthousandsofprocessingcoresontoasinglechipandtheirarchitectureissimilartothatofneuralnetworks.High-performanceGPUshaveaparallelarchitecturethatallowparallelprocessing,thatis,runningtwoormorecentralprocessingunits(CPUs)tohandleseparatepartsofanoveralltask,reducingtheamountoftimetorunaprogramme.
8Theintroductionofrecurrentneuralnetworksinthelate1980sandlongshort-termmemorynetworksin1997enhancedtheabilityofAIsystemstoprocesssequentialdata.Betweenthe1980sand2000s,theshifttowardsstatisticalmodelsandMLbegintoleadtomorepracticalNLPapplicationsliketranslationservices,searchengines,andvoice-activatedassistants.
9Alzubaidi,L.etal.(2023).
10Hu,Q.etal.(2024).
Chapter1:GenerativeArtificialIntelligence:AnOverview
Chapter1
Theacceleratedprogressionofdeeplearningandprobabilisticmodellingtechniquesintheearly2010sthusalsoledtoajumpintheproductivityofGenA.I.models,throughfacilitatingaseriesofbreakthroughsinGenA.I.modelarchitecture
(Figure1.4).Newtransferlearningtechniques11andthearrivalofmultimodalmodels(e.g.text-to-image,text-to-music)furtherhelpedtodriveefficiencyanddiversityinnewcontentgeneration.
Figure1.4:KeybreakthroughsinGenA.I.architecture:usecasesandmodels
FOUNDATIONMODELS
AlphaGo,DALL-E,NVIDIA
StyleGAN
AmazonAlexa,GooglePhotos,
Spotify
DALL-E2,StableDiffusion,Midjourney,ERNIE-ViLG
BERT,GoogleTranslate,
OpenAI’sGPTmodels,
DeepSeek,ERNIE
Realistic
imagesand
videos
Imagesandtext
Realistic
imagesand
videos
Predictivetext
a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品分成協(xié)議書
- 茶館合伙協(xié)議書
- 簽訂貿(mào)易協(xié)議書
- 夫妻吵架解決好協(xié)議書
- 王楠離婚協(xié)議書
- 聯(lián)合應急協(xié)議書
- 服裝店員工聘用協(xié)議書
- 在職研究生定向協(xié)議書
- 房產(chǎn)代理人合同協(xié)議書
- 村環(huán)境衛(wèi)生保潔協(xié)議書
- 液化天然氣汽車加氣站技術規(guī)范
- (正式版)SHT 3158-2024 石油化工管殼式余熱鍋爐
- 加油站百日攻堅行動實施方案
- 供電企業(yè)輿情的預防及處置
- GB/T 41666.4-2024地下無壓排水管網(wǎng)非開挖修復用塑料管道系統(tǒng)第4部分:原位固化內襯法
- 4、《通向金融王國的自由之路》
- 大學生職業(yè)素養(yǎng)(高職)全套教學課件
- 涉密內網(wǎng)分級保護設計方案
- 木地板培訓資料大全
- 康養(yǎng)旅游概念及市場現(xiàn)狀分析
- 99版-干部履歷表-A4打印
評論
0/150
提交評論