【HKIMR】2025生成式AI時代下的金融服務推進負責任應用報告_第1頁
【HKIMR】2025生成式AI時代下的金融服務推進負責任應用報告_第2頁
【HKIMR】2025生成式AI時代下的金融服務推進負責任應用報告_第3頁
【HKIMR】2025生成式AI時代下的金融服務推進負責任應用報告_第4頁
【HKIMR】2025生成式AI時代下的金融服務推進負責任應用報告_第5頁
已閱讀5頁,還剩134頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

FinancialServicesintheEraofGenerativeAI

FacilitatingResponsibleAdoption

April2025

HongKongInstituteforMonetaryandFinancialResearchHKIMRAppliedResearchReportNo.1/2025

Contents

Pages

Foreword2

Acknowledgements3

ExecutiveSummary4

Chapter1GenerativeArtificialIntelligence:AnOverview6

Evolution,keytechnicalbreakthroughs,andimplicationsforthefinancialservicesindustry

Chapter2

ImplicationsforFinancialServicesIndustryRiskManagementandTalentStrategies

18

Theimportanceofriskmanagementandtalent

Chapter3

InsightsfromMarketParticipantsinHongKong

31

GenA.I.adoptioninthefinancialservicesindustry

Chapter4

TheRoleofRegulation

45

Theinternationalandlocalexperience

Chapter5

ConsiderationsForFosteringResponsibleGenA.I.adoptioninHongKong

55

Thescopeforfurtherfacilitationandcooperation

Conclusions63

AppendixA:BackgroundoftheGenA.I.Survey64

AppendixB:GlossaryofTechnicalTerms66

AppendixC:References70

Foreword

GenerativeArtificialIntelligence(GenA.I.),arapidlyevolvingtechnologyinitsearlystagesofdevelopmentandadoption,representsthelatestevolutioninArtificialIntelligence(AI).GloballyandinHongKong,financialinstitutionsareswiftlyexploringGenA.I.’scapabilities,withmanypromisingusecasesemerging.

Inthefinancialservicesindustry,GenA.I.applicationshavethepotentialtoleadtomorecuratedcustomerexperience,andmoreefficientwaysofprocessingandutilisingdigitalinformation.However,theadoptionofGenA.I.couldalsogiverisetonewrisksandchallenges.ThissuggeststhatamidstacceleratedGenA.I.innovation,itsadoptionrequiresacriticalfocusonsafety,trustandintegrity.InHongKong,authoritieshavebeguntoupdateregulatoryguidelinesandtolaunchinitiativesinsupportofresponsibleGenA.I.adoptionandinnovation.

Motivatedbyrecentdevelopments,thisreportprovidesacomprehensiveoverviewoftheevolutionofGenA.I.anditsbroaderimplicationsforboththefinancialservicesindustryandfinancialregulators.ThereportdrawsonthefindingsfromasurveyandinterviewscommissionedbytheHongKongInstituteforMonetaryandFinancialResearch,whichgatheredtheviewsofmarketparticipantsonthecurrentstateofGenA.I.adoptionamonglocalfinancialinstitutions,theexpectedtrajectoryofGenA.I.developmentinHongKong,andthestrategiesemployedforriskmanagementandtalentdevelopment.

ThereportfindsthattheadoptionofGenA.I.isprogressingsteadilyacrossthefinancialservicesindustryinHongKong.However,therearechallengeshinderingadoption,includingconcernsregardingmodelaccuracy,dataprivacyandsecurity,aswellasconstraintsrelatedtoresourcesandtalent.Theemergenceoflessresource-intensivemodelsandmaturingtechnology,coupledwithregulatoryengagement,islikelytocontributetothebroadeningofGenA.I.adoptionovertime.Basedonthesefindings,thereportoutlinessomeconsiderationsaimedatfacilitatingresponsibleGenA.I.adoptionbythefinancialservicesindustryinHongKong.

WehopethefindingsofthisreportcanhelpinformbestpracticesforaddressingGenA.I.adoptionchallengesinthefinancialservicesindustry,andcontributetodiscussionsonresponsibleinnovationandadoption,aswellasindustry-widecapacitybuilding.Lookingahead,withmaturingGenA.I.technologyandevolvingregulationanticipatedtosupportabroadeningofGenA.I.’sapplicationtoawiderspectrumofactivities,furtherresearchmayalsobewarrantedtounderstandthepotentialforGenA.I.tosupportRegTech,SupTech,andthebroaderpolicysetting.

MrEnochFung

ChiefExecutiveOfficer

HongKongAcademyofFinance

ExecutiveDirector

HongKongInstituteforMonetaryandFinancialResearch

2FinancialServicesintheEraofGenerativeAI

Acknowledgements

WethanktheInsuranceAuthority,MandatoryProvidentFundSchemesAuthority,SecuritiesandFuturesCommission,aswellastheBankingConductDepartment,theBankingPolicyDepartment,theBankingSupervisionDepartmentandtheDigitalFinanceDivisionoftheHongKongMonetaryAuthorityfortheirvaluablecommentsandsuggestions.WearealsogratefulforourcollaborationwithErnst&YoungAdvisoryServicesLimitedindesigningandadministeringasurvey,titledFinancialServicesintheEraofGenerativeArtificialIntelligence:OpportunitiesandRiskManagement,fromOctober2024toJanuary2025,andinconductinginterviewswithvariousmarketparticipants,includingbanks,insurers,andassetandwealthmanagers,aswellasGenA.I.

serviceproviders.Finally,wethanktheHongKongInstituteforMonetaryandFinancialResearchCouncilofAdvisersforAppliedResearchfortheircontinuingsupportandguidancerelatedtotheInstitute’sresearchactivities.

HongKongInstituteforMonetaryandFinancialResearch?April20253

4FinancialServicesintheEraofGenerativeAI

ExecutiveSummary

GenerativeArtificialIntelligence(GenA.I.),arapidlyevolvingtechnologyinitsearlystagesofdevelopmentandadoption,representsthelatestevolutioninArtificialIntelligence(AI).GenA.I.modelscanlearnfromthepatternsandstructuresoftheirtrainingdatatogenerateoutputswithsimilarcharacteristics,beittext,images,audio,orvideo.GenA.I.’skeyattributesofaccessbiilty,versatility,andadaptabiitythusbroadensthepotentialtoautomate,innovate,andenhanceproductivityinthefinancialservicesindustry.

TheadoptionofGenA.I.isprogressingsteadilyacrossthefinancialservicesindustryinHongKong.

75%ofthesurveyedfinancialinstitutionshavealreadyimplementedatleastoneGenA.I.usecase,orarecurrentlypilotinganddesigningusecases,andexploringpotentialinvestmentareas.Thisratioisexpectedtoincreaseto87%withinthenextthreetofiveyears.

GenA.I.adoptionhasbeensomewhathigheramongthelargersurveyedfinancialinstitutions.Amongsurveyedfirms,83%oflargefirmshaverolledoutatleastoneGenA.I.usecaseoraretakingstepstowardsadoption,comparedto63%ofsmallfirms.LargerfirmsweretypicallymoreadvancedintheirGenA.I.adoptionandgeneralpreparedness,whilesmallerfirmswithcomparativelylessresourcesfacedgreateradoptionhurdles.

TheprimaryimplementationsofGenA.I.infinancialservicesremainlargelyinternalandnon-customerfacing.75%ofthesurveyedfinancialinstitutionsviewedGenA.I.asatooltoenhanceproductivityandoperationalefficiency,followedby53%whoviewedGenA.I.asempowermentforinnovationanddecision-making.ThemostcommonGenA.I.usecasesarevirtualassistantsforemployees,withGenA.I.useincomplex,higher-risk,andexternalcustomer-facingapplicationsdependentonfurtherimprovementsintheaccuracyofthetechnology.

Thereareanumberofriskmanagementchallengeshinderingadoption,includingconcernsregardingmodelaccuracy,dataprivacyandsecurity,aswellasconstraintsrelatedtoresourcesandtalent.

WhenadoptingGenA.I.,financialinstitutionsconsideredmodelperformanceandaccuracy(highlightedby95%ofsurveyedfirms),modeltransparencyandexplainability(65%),anddataprivacyandsecurity(64%)asthetopthreerisk-managementconsiderations.

Tostrengthenriskmanagement,financialinstitutionsinHongKonghavemadesolidfirststepstowardsresponsibleGenA.I.adoptionanddevelopment,supportedbyupdatedregulatoryguidelines.ThereisaclearprioritisationoftransparencyandaccountabilityinGenA.I.tools,alongsideastrongemphasisondataprotectionandsafeguardingcustomerinformation.Ongoingdatamonitoringandgovernanceofmodeloutputs,andenhancingdataqualitycontrolsandchecks,werecommonpriorityareasidentifiedforimprovement.GenA.I.-relatedcybersecurityawarenesstrainingandregularsecurityassessmentstoidentifyvulnerabilitiesarealsobeingintroduced.

A‘human-in-the-loop’approachisalsoconsiderednecessarytoensureproperriskmanagementandcontrols,especiallyatthisstageofGenA.I.technologymaturity.Consistentwiththisapproach,about80%ofthesurveyedfinancialinstitutionsidentifiedtechnicalskillsrequiredintheuseanddevelopmentofGenA.I.assomeofthetopskillsgapsfacedbytheindustry.60%ofsurveyrespondentsalsohighlightedcomplianceskillsasakeyskillsgapinsupportingGenA.I.initiatives.

Reskillingandupskillingappearstobeacorepartoffinancialinstitutions’talentstrategy.Tohelpbridgeskillsgaps,thesurveyedfinancialinstitutionsareoptingforacombinationof

HongKongInstituteforMonetaryandFinancialResearch?April20255

ExecutiveSummary

upskillingexistingemployees,hiringnewtalent,andestablishingexternalpartnerships,especiallywithGenA.I.serviceproviders.Thereisalsoanemphasisoncontinuouslearningandinnovationandonupskillingexistingdataandtechnologyteamsinareasofdatascience,cloudcomputingandbusinessanalytics.

Theemergenceoflessresource-intensivemodelsandmaturingtechnology,coupledwithregulatoryengagement,arelikelytocontributetothebroadeningofGenA.I.adoptionovertime.Therecentemergenceoflessresource-intensivemodels,suchasDeepSeek-R1,ischallengingtheprevalentviewthatscalingGenA.I.requiresvastcomputingpowerandinvestment.Newapproachestolanguagemodellingarealsoimprovingmodelaccuracyandgeneralperformance.ThetrajectoryofthesedevelopmentsshouldsupportabroadeningofGenA.I.useovertime.

InrecognitionofthetransformativepotentialofGenA.I.,andtofacilitateresponsibleadoption,theregulatoryandpolicylandscapeofAIregulationhasbeenanevolvingprocessacrossjurisdictionsworldwide.Regulatorsgloballyhavebegunre-examiningtheirregulatoryframeworksgoverningAIdevelopmentandadoption.MultilateraldiscussionsamongglobalpolicymakersarealsounderwaytounderstandthepotentialimplicationsofGenA.I.adoptionforfinancialstabilityandmarketintegrity.

Althoughjurisdiction-specificregulatoryframeworksarecurrentlydiverseintermsofthedegreeofcodification,industrycoverage,andsandboxingandfacilitation,thesecontinuetobeguidedbyanendgoaloffacilitatingresponsibleadoption,andbalancingbetweeninnovationandsafety.Achievinggreatercross-jurisdictionharmonisationovertimecanhelpreducethecostsofcompliance

forfinancialinstitutions,especiallythosewithasubstantialglobalfootprint,aswellashelppreventregulatoryarbitrage.

Basedonthesefindings,thereportoutlinessomeconsiderationsforfacilitatingresponsibleGenA.I.adoptionbythefinancialservicesindustryinHongKong.TheHongKonggovernmentandfinancialauthoritieshavebeenactiveinundertakingamulti-prongedapproachinsupportingresponsibleGenA.I.adoptionanddevelopment,withthereleaseofpolicystatements,regulatorycircularsandguidelinessurroundingtheuseofGenA.I.,andthelaunchoffacilitationmeasuressuchastheHongKongMonetaryAuthority(HKMA)andCyberportGenA.I.SandboxforbanksandtheCyberportAISupercomputingCentre.

Inthenear-term,continuedadjustmentsoffinancialinstitutions’riskmanagementframeworkstoalignwithbestpracticescanfosterfurtheradoption.Expandingthescopeoffacilitationmeasures,aswellassupportingtechnologyandimplementationinfrastructure,canalsofacilitateresponsibleGenA.I.adoptionandspurinnovationanddevelopment.

Inthemedium-term,surveyandinterviewssuggestgreatercollaborationamongregulators,industryplayersanddevelopers,cross-jurisdictionregulatoryengagement,andsustainedlong-terminvestmentindigitalinfrastructurearecrucialasGenA.I.adoptionbroadens.

Thesurveyedfinancialinstitutionsviewedthedevelopmentofmoreadvancedusecasesandapplicationsasthetopareawhereindustry-regulator-developercooperativegainsaremostlikelytooccur,followedbytalentdevelopment,enhancedpublicunderstanding,andinfrastructure.

Chapter1

GenerativeArtificialIntelligence:AnOverview

HIGHLIGHTS:

?GenA.I.’skeyattributesofaccessibility,versatility,andadaptabilitybroadensthepotentialtoautomate,innovate,andenhanceproductivityinthefinancialservicesindustry.Byautomatinglabour-intensivetasksandaugmentingworkersincognitivetasks,GenA.I.canalsofreeuphumancapitalforstrategicplanning.

?However,similartoothertechnologicaladvancementsintheearlystagesofdevelopmentandadoption,GenA.I.alsointroducespotentialrisksthatposechallengesforfinancialinstitutionsasprospectiveend-users,andforfinancialauthoritiesthroughtheimplicationsforfinancialstability,andconsumerandinvestorprotection.

?ResponsibleGenA.I.adoptionthusrequiresfinancialinstitutionstoconsidertherobustnessoftheirriskmanagementandtalentstrategies.Financialregulationisalsoanticipatedtobeadynamicprocess,owingtothenascentnatureofthetechnology,andthespeedandbreadthoftheintegrationofGenA.I.intothefinancialservicesindustry.

HongKongInstituteforMonetaryandFinancialResearch?April20257

Chapter1:GenerativeArtificialIntelligence:AnOverview

GenerativeArtificialIntelligence(GenA.I.),arapidlyevolvingtechnologyinitsearlystagesofdevelopmentandadoption,representsthelatestevolutioninArtificialIntelligence(AI).Itsdevelopmenthasbeenunderpinnedbyadvancementsincomputingpowerandefficiency,breakthroughsindeepmachinelearningarchitecture,andtheavailabilityoflargedatasetsthathavefacilitatedthetrainingofcomplexfoundationmodels.GenA.I.modelscanlearnfromthepatternsandstructuresoftheirtrainingdatato‘generate’outputswithsimilarcharacteristics,beittext,images,audio,orvideo.GloballyandinHongKong,financialinstitutionsareswiftlyexploringGenA.I.’scapabilities,withmanypromisingusecasesemerging1.ThischapterprovidesanoverviewofGenA.I.,includingthekeymilestonesandtechnicalbreakthroughs,itskeyattributesandrisksfeatures,anditsbroaderimplicationsforboththefinancialservicesindustryandfinancialauthorities.

Chapter1

1.1ABRIEFHISTORYOFAI

ThebirthofAI

AIisintelligenceexhibitedbymachinesandtheabilityofmachinestoperformtaskscommonlyassociatedwithhumanintelligence.Theinventionoftheprogrammableelectroniccomputeratthebeginningofthe20thcenturyfirstpromptedseriousconsiderationofAIanditspossibilities.Sincethen,AIresearchhasprogressedthroughanumberofdistinctdevelopmentalparadigms2,inareflectionofbothshiftsinAIideologyandthegradualadvancementofthetechnology(Figure1.1).

Figure1.1:MajorstagesinAIdevelopment

ANNsand

DeepLearning(2000s-2010s)

MachineLearning (1990s)

GenA.I.

(2020s)

Rule-based

AISystems

(1950s-1980s)

Source:HKIMRstaffcompilation.

InitialAIresearchwasfocusedonhowtoencodelogicreasoningintomachines,andthedesignofAIsystemsthatfollowspecificrulesandperformwell-definedtasks3.Oneofthefirstnaturallanguageprocessing(NLP)chatbots,ELIZA,wasdevelopedduringthisperiod.Althoughthisperiod

culminatedinthearrivalofexpertsystemsthatemulatetheknowledgeandreasoningabilitiesofhumanexpertsinspecificdomainsrequiringnarrowbutdeepknowledge,thedifficultyofsuchrule-basedAIsystemsinhandlingambiguousandnoisydata4ultimatelylimitedanyreal-worldapplicationsandadoption.

1Mckinsey&Company(2023).

2EuropeanCommission(2020).

3TwoattendeesoftheDartmouthSummerResearchProjectonArtificialIntelligence,HerbertSimonandAllenNewell,proposedmorespecificallythathumanmindsandmoderndigitalcomputerswere‘speciesofthesamegenus,’namelysymbolicinformationprocessingsystems–bothtakesymbolicinformationasinput,manipulateitaccordingtoasetofformalrules,andinsodoingcansolveproblems,formulatejudgements,andmakedecisions.

4Thetranslationofhumanknowledgeintologicalrulestosolveevermorecomplexreal-worldproblemsprovedcomputationallyexpensiveandimpractical,contributingto‘knowledgebottlenecks’.

Chapter1:GenerativeArtificialIntelligence:AnOverview

Machinelearning

Fromthe1990sonwards,steadyadvancesincomputationalpowertotrainandrunAImodelsandprogressinmachinelearning(ML)algorithmsthatleveragestatisticaltechniquestoprocessinformationbegantosupportbetterpredictionsanddecision-makingbasedonhistoricaldata.Theuseofbackpropagation,aniterativealgorithmthathelpstominimisethecostfunctionbydeterminingwhichweightsandbiasesshouldbeadjustedbymovingdownthegradientoftheerror,alsoexperiencedaresurgenceoverthisperiod.Byenablingmoreefficienttraining,backpropagationhelpedtoinspiretherenaissanceandinterestinartificialneuralnetworksinAIresearch.Asaresult,MLdefinitivelyshiftedfromarule-basedknowledge-drivenapproachtoadata-drivenapproach.

Artificialneuralnetworks(ANNs)

Artificialneuralnetworks5,withtheirtopologyofinterconnectedfunctions(‘neuralnodes’),aimtosimulatethewayneuronsinthehumanbraindecipherinformationandsignaltooneanother,andaretrainedtorecognisepatternsand

inferrulesthroughprocessinglargeamountsofinputdataacrosssuccessiveand‘hidden’neuralnetworklayers(Figure1.2).TheintegrationofMLalgorithmsintothistypeofAImodelarchitectureenabledthemodeltolearnmathematicallycomplexrelationshipsbetweendatapointsthroughnumerousiterations,andhasgreatlyexpandedthepotentialforAIinreal-worldapplicationsandadoption.

Ineachlayer,theweightsoftheneuralnodesareadjustedthroughtheapplicationofstatisticalmethodstoprioritisethoseinputdatafromprecedingnodesthatcontributetoimprovingthedesiredoutput,untilthebestfittingmodelthatminimisesthecumulativeerrorfromallthetrainingdatapointsisfound.Oncetrained,neuralnetworksarefurthercalibratedandvalidatedtominimiseerroronapreviously‘unseen’segmentoftheinputdataset(the‘testdata’),toimprovetheirrobustnesstonoise.Thetrainedandvalidatedneuralnetworkmodelcanthenbeusedtointerpretnewinputsandmakedecisionsorpredictions.Themorelayersandinterconnectedneuronsperlayeraneuralnetworkhas,thelargerandmorediversethetrainingdataandcomputingpoweritrequires.

Chapter1

Figure1.2:Anexampleschematicoftheworkingofartificialneuralnetworks

Input1

Input2

Input3

InputN

InputlayerHiddenlayersOutputlayer

Output

Source:HKIMRstaffcompilation.

5Artificialneuralnetworkswerefirstproposedin1943byWarrenMcCulloughandWalterPittsfromtheUniversityofChicago,withthepublicationofthefirstmathematicalmodellingofaneuralnetworkandhowitmightperformsimplelogicalfunctions.Thefirsttrainableneuralnetwork,thePerceptron,wasdemonstratedbyCornellUniversitypsychologistFrankRosenblattin1957.

8FinancialServicesintheEraofGenerativeAI

Chapter1:GenerativeArtificialIntelligence:AnOverview

HongKongInstituteforMonetaryandFinancialResearch?April20259

Deeplearning

Theabilityofneuralnetworkstotakeonadditionallayershasimprovedovertimethroughnewtrainingtechniques6.However,itwastheintegrationofhigh-performancegraphicsprocessingunits(GPUs)andthusmoreefficientparallelprocessing7,aswellasadditionalaccessto‘bigdata’setsthroughcloudservices,thatreallyfacilitatedthetrainingandrunningofmulti-layered(‘deep’)neuralnetworks.Greatercomputationalpoweralsosupportedmoresophisticatedlearningapproaches,expandingthetypeofdatausedtotrainthealgorithms,whilereducingthedegree

Chapter1

ofhumaninterventionandincreasingin-modelfeedback(Figure1.3).Inrecentyears,deeplearninghascometounderpintheAIsystemsbehindnearlyallhigh-performingpredictiveandprescriptiveAIapplications,fromforecastingandfrauddetectiontooptimisationandlogistics.Today,large-scaleAIsystemscanhavehundredsoreventhousandsofhiddenneuralnetworklayersthatmimicthecomplexdecision-makingpowersofthehumanbrain,andexcelatthetypeofreal-worldtasksthatearlierrule-basedAIsystemsstruggledwith.

Figure1.3:Comparisonofdeeplearningapproaches

Inputdata

(states&actions)

Inputdata

(unlabelled)

Inputdata

(labelled)

UnsupervisedLearning

SupervisedLearning

ReinforcementLearning

Error

Error

Reinforcementsignal

Critic

Output

OutputCritic

Output

(mapping)(classes)(state/action)

Sources:IBMandHKIMRstaffcompilation.

TheeraofGenA.I.

EvolutioninGenA.I.hasmirroredtheevolutioninbroaderAIresearch.TherewasearlyGenA.I.experimentationwithstatisticalmodelsforspeechrecognitioninthe1950sandsomesuccessinlanguagemodellingtasksbythelate1980s8.However,GenA.I.applicationsforalongtimestruggledtomovebeyondsimpledetectiontothe

efficientgenerationofhigh-qualityanddiversenewcontent.ThisreflectstheevenhigherdemandofGenA.I.thantraditionalAIforlargeanddiversetrainingdatasetsthatcanadequatelycapturetheintricaciesandvariationspresentintherealworld9,andforcomputationalpowerthatcantrainandoperatethecomplexintegratedalgorithmsoflarge-scalefoundationmodels10.

6Theinventionofthe‘greedylayer-wisepre-training’techniquein2006allowedeachlayerofaneuralnetworktobetrainedindividually,therebyreducingtheaggregateamountoftrainingtime.

7GPUs,originallydesignedforuseincomputergames,packthousandsofprocessingcoresontoasinglechipandtheirarchitectureissimilartothatofneuralnetworks.High-performanceGPUshaveaparallelarchitecturethatallowparallelprocessing,thatis,runningtwoormorecentralprocessingunits(CPUs)tohandleseparatepartsofanoveralltask,reducingtheamountoftimetorunaprogramme.

8Theintroductionofrecurrentneuralnetworksinthelate1980sandlongshort-termmemorynetworksin1997enhancedtheabilityofAIsystemstoprocesssequentialdata.Betweenthe1980sand2000s,theshifttowardsstatisticalmodelsandMLbegintoleadtomorepracticalNLPapplicationsliketranslationservices,searchengines,andvoice-activatedassistants.

9Alzubaidi,L.etal.(2023).

10Hu,Q.etal.(2024).

Chapter1:GenerativeArtificialIntelligence:AnOverview

Chapter1

Theacceleratedprogressionofdeeplearningandprobabilisticmodellingtechniquesintheearly2010sthusalsoledtoajumpintheproductivityofGenA.I.models,throughfacilitatingaseriesofbreakthroughsinGenA.I.modelarchitecture

(Figure1.4).Newtransferlearningtechniques11andthearrivalofmultimodalmodels(e.g.text-to-image,text-to-music)furtherhelpedtodriveefficiencyanddiversityinnewcontentgeneration.

Figure1.4:KeybreakthroughsinGenA.I.architecture:usecasesandmodels

FOUNDATIONMODELS

AlphaGo,DALL-E,NVIDIA

StyleGAN

AmazonAlexa,GooglePhotos,

Spotify

DALL-E2,StableDiffusion,Midjourney,ERNIE-ViLG

BERT,GoogleTranslate,

OpenAI’sGPTmodels,

DeepSeek,ERNIE

Realistic

imagesand

videos

Imagesandtext

Realistic

imagesand

videos

Predictivetext

a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論