




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省鞍山市鐵西區、立山區2025屆初三綜合練習數學試題卷(三模)注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.點P(1,﹣2)關于y軸對稱的點的坐標是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)2.如圖是由兩個小正方體和一個圓錐體組成的立體圖形,其主視圖是()A. B. C. D.3.如圖,函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)4.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.5.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元6.某校數學興趣小組在一次數學課外活動中,隨機抽查該校10名同學參加今年初中學業水平考試的體育成績,得到結果如下表所示:下列說法正確的是()A.這10名同學體育成績的中位數為38分B.這10名同學體育成績的平均數為38分C.這10名同學體育成績的眾數為39分D.這10名同學體育成績的方差為27.下列四個圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.8.下列計算正確的是()A.a2+a2=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b9.如圖1,等邊△ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形.設點I為對稱軸的交點,如圖2,將這個圖形的頂點A與等邊△DEF的頂點D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動,當它第一次回到起始位置時,這個圖形在運動中掃過區域面積是()A.18π B.27π C.π D.45π10.如圖,點P是以O為圓心,AB為直徑的半圓上的動點,AB=2,設弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數關系的圖象大致是A.B.C.D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.12.不等式組的解集為,則的取值范圍為_____.13.方程的兩個根為、,則的值等于______.14.的算術平方根為______.15.如圖△ABC中,AB=AC=8,∠BAC=30°,現將△ABC繞點A逆時針旋轉30°得到△ACD,延長AD、BC交于點E,則DE的長是_____.16.我國經典數學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數式可表示為尺,根據題意列方程為.17.已知⊙O的半徑為5,由直徑AB的端點B作⊙O的切線,從圓周上一點P引該切線的垂線PM,M為垂足,連接PA,設PA=x,則AP+2PM的函數表達式為______,此函數的最大值是____,最小值是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知點在反比例函數的圖象上,過點作軸,垂足為,直線經過點,與軸交于點,且,.求反比例函數和一次函數的表達式;直接寫出關于的不等式的解集.19.(5分)如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.(1)求證:AB=AC;(2)若,求⊙O的半徑.20.(8分)如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.21.(10分)爸爸和小芳駕車去郊外登山,欣賞美麗的達子香(興安杜鵑),到了山下,爸爸讓小芳先出發6min,然后他再追趕,待爸爸出發24min時,媽媽來電話,有急事,要求立即回去.于是爸爸和小芳馬上按原路下山返回(中間接電話所用時間不計),二人返回山下的時間相差4min,假設小芳和爸爸各自上、下山的速度是均勻的,登山過程中小芳和爸爸之間的距離s(單位:m)關于小芳出發時間t(單位:min)的函數圖象如圖,請結合圖象信息解答下列問題:(1)小芳和爸爸上山時的速度各是多少?(2)求出爸爸下山時CD段的函數解析式;(3)因山勢特點所致,二人相距超過120m就互相看不見,求二人互相看不見的時間有多少分鐘?22.(10分)某農場急需銨肥8噸,在該農場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關系如圖所示.(1)根據圖象求出b關于a的函數解析式(包括自變量的取值范圍);(2)若農場到B公司的路程是農場到A公司路程的2倍,農場到A公司的路程為m千米,設農場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關于x的函數解析式(m為常數),并向農場建議總費用最低的購買方案.23.(12分)為看豐富學生課余文化生活,某中學組織學生進行才藝比賽,每人只能從以下五個項目中選報一項:.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據學生報名的統計結果,繪制了如下尚不完整的統計圖:圖1各項報名人數扇形統計圖:圖2各項報名人數條形統計圖:根據以上信息解答下列問題:(1)學生報名總人數為人;(2)如圖1項目D所在扇形的圓心角等于;(3)請將圖2的條形統計圖補充完整;(4)學校準備從書法比賽一等獎獲得者甲、乙、丙、丁四名同學中任意選取兩名同學去參加全市的書法比賽,求恰好選中甲、乙兩名同學的概率.24.(14分)小雁塔位于唐長安城安仁坊(今陜西省西安市南郊)薦福寺內,又稱“薦福寺塔”,建于唐景龍年間,與大雁塔同為唐長安城保留至今的重要標志.小明在學習了銳角三角函數后,想利用所學知識測量“小雁塔”的高度,小明在一棟高9.982米的建筑物底部D處測得塔頂端A的仰角為45°,接著在建筑物頂端C處測得塔頂端A的仰角為37.5°.已知AB⊥BD,CD⊥BD,請你根據題中提供的相關信息,求出“小雁塔”的高AB的長度(結果精確到1米)(參考數據:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】關于y軸對稱的點,縱坐標相同,橫坐標互為相反數,由此可得P(1,﹣2)關于y軸對稱的點的坐標是(﹣1,﹣2),故選C.【點睛】本題考查了關于坐標軸對稱的點的坐標,正確地記住關于坐標軸對稱的點的坐標特征是關鍵.關于x軸對稱的點的坐標特點:橫坐標不變,縱坐標互為相反數;關于y軸對稱的點的坐標特點:縱坐標不變,橫坐標互為相反數.2、B【解析】主視圖是從正面看得到的視圖,從正面看上面圓錐看見的是:三角形,下面兩個正方體看見的是兩個正方形.故選B.3、D【解析】
過點C作CD⊥x軸與D,如圖,先利用一次函數圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=本題主要考查一次函數的基本概念。角角邊定理、全等三角形的性質以及一次函數的應用,熟練掌握相關知識點是解答的關鍵.4、A【解析】試題分析:根據垂徑定理的推論,知此圓的圓心在CD所在的直線上,設圓心是O.連接OA.根據垂徑定理和勾股定理求解.得AD=6設圓的半徑是r,根據勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點:垂徑定理的應用.5、C【解析】
根據題意求出長方形廣告牌每平方米的成本,根據相似多邊形的性質求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.本題考查的是相似多邊形的性質,掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.6、C【解析】試題分析:10名學生的體育成績中39分出現的次數最多,眾數為39;第5和第6名同學的成績的平均值為中位數,中位數為:=39;平均數==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴選項A,B、D錯誤;故選C.考點:方差;加權平均數;中位數;眾數.7、D【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形,故此選項正確.故選D.此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.8、D【解析】
各項計算得到結果,即可作出判斷.【詳解】A、原式=2a2,不符合題意;B、原式=-a6,不符合題意;C、原式=a2+2ab+b2,不符合題意;D、原式=-4b,符合題意,故選:D.此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.9、B【解析】
先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【詳解】如圖1中,∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,
∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運動過程中所掃過的區域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.本題考查軌跡,弧長公式,萊洛三角形的周長,矩形,扇形面積公式,解題的關鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.10、A。【解析】如圖,∵根據三角形面積公式,當一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據勾股定理,得弦AP=x=。∴當x=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項。又∵當AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(1,)應在y=的一半上方,從而可排除C選項。故選A。二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
利用△ACD∽△CBD,對應線段成比例就可以求出.【詳解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.本題考查了相似三角形的性質和判定,熟練掌握相似三角形的判定方法是關鍵.12、k≥1【解析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案為k≥1.13、1.【解析】
根據一元二次方程根與系數的關系求解即可.【詳解】解:根據題意得,,所以===1.故答案為1.本題考查了根與系數的關系:若、是一元二次方程(a≠0)的兩根時,,.14、【解析】
首先根據算術平方根的定義計算先=2,再求2的算術平方根即可.【詳解】∵=2,∴的算術平方根為.本題考查了算術平方根,屬于簡單題,熟悉算數平方根的概念是解題關鍵.15、【解析】
過點作于,根據三角形的性質及三角形內角和定理可計算再由旋轉可得,,根據三角形外角和性質計算,根據含角的直角三角形的三邊關系得和的長度,進而得到的長度,然后利用得到與的長度,于是可得.【詳解】如圖,過點作于,∵,∴.∵將繞點逆時針旋轉,使點落在點處,此時點落在點處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.本題考查三角形性質的綜合應用,要熟練掌握等腰三角形的性質,含角的直角三角形的三邊關系,旋轉圖形的性質.16、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數式可表示為(x+1)尺,根據題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.17、x2+x+20(0<x<10)不存在.【解析】
先連接BP,AB是直徑,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求從而有(0<x<10),再根據二次函數的性質,可求函數的最大值.【詳解】如圖所示,連接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,沒有最小值,∴y最大值=故答案為(0<x<10),,不存在.考查相似三角形的判定與性質,二次函數的最值等,綜合性比較強,需要熟練掌握.三、解答題(共7小題,滿分69分)18、(1)y=-.y=x-1.(1)x<2.【解析】分析:(1)根據待定系數法即可求出反比例函數和一次函數的表達式.詳解:(1)∵,點A(5,2),點B(2,3),
∴
又∵點C在y軸負半軸,點D在第二象限,
∴點C的坐標為(2,-1),點D的坐標為(-1,3).
∵點在反比例函數y=的圖象上,
∴
∴反比例函數的表達式為
將A(5,2)、B(2,-1)代入y=kx+b,
,解得:∴一次函數的表達式為.
(1)將代入,整理得:
∵
∴一次函數圖象與反比例函數圖象無交點.
觀察圖形,可知:當x<2時,反比例函數圖象在一次函數圖象上方,
∴不等式>kx+b的解集為x<2.點睛:本題考查了反比例函數與一次函數的交點問題:求反比例函數與一次函數的交點坐標,把兩個函數關系式聯立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.19、(1)證明見解析;(2)1.【解析】
(1)由同圓半徑相等和對頂角相等得∠OBP=∠APC,由圓的切線性質和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據等角對等邊得AB=AC;(2)設⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據勾股定理列等式,并根據AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【詳解】解:(1)連接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB與⊙O相切于點B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)設⊙O的半徑為r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,則⊙O的半徑為1.本題考查了圓的切線的性質,圓的切線垂直于經過切點的半徑;并利用勾股定理列等式,求圓的半徑;此類題的一般做法是:若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系;簡記作:見切點,連半徑,見垂直.20、(1)見解析;(2)見解析【解析】
(1)從所給的條件可知,DE是△ABC中位線,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四邊形BCFE是平行四邊形,又因為BE=FE,所以四邊形BCFE是菱形.(2)因為∠BCF=120°,所以∠EBC=60°,所以菱形的邊長也為4,求出菱形的高面積就可.【詳解】解:(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四邊形BCFE是平行四邊形.又∵BE=FE,∴四邊形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等邊三角形.∴菱形的邊長為4,高為.∴菱形的面積為4×=.21、(1)小芳上山的速度為20m/min,爸爸上山的速度為28m/min;(2)爸爸下山時CD段的函數解析式為y=12x﹣288(24≤x≤40);(3)二人互相看不見的時間有7.1分鐘.【解析】分析:(1)根據速度=路程÷時間可求出小芳上山的速度;根據速度=路程÷時間+小芳的速度可求出爸爸上山的速度;
(2)根據爸爸及小芳的速度結合點C的橫坐標(6+24=30),可得出點C的坐標,由點D的橫坐標比點E少4可得出點D的坐標,再根據點C、D的坐標利用待定系數法可求出CD段的函數解析式;
(3)根據點D、E的坐標利用待定系數法可求出DE段的函數解析式,分別求出CD、DE段縱坐標大于120時x的取值范圍,結合兩個時間段即可求出結論.詳解:(1)小芳上山的速度為120÷6=20(m/min),爸爸上山的速度為120÷(21﹣6)+20=28(m/min).答:小芳上山的速度為20m/min,爸爸上山的速度為28m/min.(2)∵(28﹣20)×(24+6﹣21)=72(m),∴點C的坐標為(30,72);∵二人返回山下的時間相差4min,44﹣4=40(min),∴點D的坐標為(40,192).設爸爸下山時CD段的函數解析式為y=kx+b,將C(30,72)、D(40,192)代入y=kx+b,,解得:.答:爸爸下山時CD段的函數解析式為y=12x﹣288(24≤x≤40).(3)設DE段的函數解析式為y=mx+n,將D(40,192)、E(44,0)代入y=mx+n,,解得:,∴DE段的函數解析式為y=﹣48x+2112(40≤x≤44).當y=12x﹣288>120時,34<x≤40;當y=﹣48x+2112>120時,40≤x<41.1.41.1﹣34=7.1(min).答:二人互相看不見的時間有7.1分鐘.點睛:本題考查了一次函數的應用、待定系數法求一次函數解析式以及一次函數圖象上點的坐標特征,解題的關鍵是:(1)根據數量關系,列式計算;(2)根據點C、D的坐標,利用待定系數法求出CD段的函數解析式;(3)利用一次函數圖象上點的坐標特征分別求出CD、DE段縱坐標大于120時x的取值范圍.22、(1)b=;(2)詳見解析.【解析】
(1)分別設兩段函數圖象的解析式,代入圖象上點的坐標求解即可;(2)先求出農場從A、B公司購買銨肥的費用,再求出農場從A、B公司購買銨肥的運輸費用,兩者之和即為總費用,可以求出總費用關于x的解析式是一次函數,根據m的取值范圍不同分兩類討論,可得出結論.【詳解】(1)有圖象可得,函數圖象分為兩部分,設第一段函數圖象為y=k1x,代入點(4,12),即12=k1×4,可得k1=3,設第二段函數圖象為y=k2x+c,代入點(4,12)、(8,32)可列出二元一次方程組,解得:k2=5,c=-8,所以函數解析式為:b=;(2)農場從A公司購買銨肥的費用為750x元,因為B公司有銨肥7噸,1≤x≤3,故農場從B公司購買銨肥的重量(8-x)肯定大于5噸,農場從B公司購買銨肥的費用為700(8-x)元,所以購買銨肥的總費用=750x+700(8-x)=50x+5600(0≤x≤3);農場從A公司購買銨肥的運輸費用為3xm元,且滿足
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高考英語書面表達答題模板題型06 薦信(答題模板與解題技巧)(解析版)
- JAVA中圖形界面的實現與試題及答案
- 涉險隱患排查方案(3篇)
- 租賃合同協議書有效嗎
- 糧食和物資儲備科技創新的策略及實施路徑
- 200MW獨立儲能項目可行性研究報告(范文模板)
- 如何通過燙發打造時尚發型
- 計算機二級MySQL考生心得與試題及答案
- 環境變量與C語言題目及答案
- 網絡管理員核心技能試題及答案
- 夜場水煙合作協議書
- 河南省青桐鳴大聯考普通高中2024-2025學年高三考前適應性考試地理試題及答案
- 管道勞務分包協議書
- 2025-2030中國鋰電子電池行業市場深度調研及前景趨勢與投資研究報告
- 江蘇省南京市建鄴區2023-2024學年八年級下學期期末考試物理試題【含答案解析】
- 公立醫院與民營醫院醫聯體合作協議書(2篇)
- 25《慢性子裁縫和急性子顧客》核心素養公開課一等獎創新教學設計
- 退出聯合診所協議書
- 港股通知識測試題及答案
- 綠化工程投標方案(技術標)
- 《溺水急救方法》課件
評論
0/150
提交評論