




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古呼倫貝爾市重點中學2025屆高三下期中質量檢測試題數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發奇想,設計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P22.記其中表示不大于x的最大整數,若方程在在有7個不同的實數根,則實數k的取值范圍()A. B. C. D.3.把滿足條件(1),,(2),,使得的函數稱為“D函數”,下列函數是“D函數”的個數為()①②③④⑤A.1個 B.2個 C.3個 D.4個4.已知是等差數列的前項和,若,,則()A.5 B.10 C.15 D.205.已知函數,,若對,且,使得,則實數的取值范圍是()A. B. C. D.6.執行如圖所示的程序框圖,則輸出的值為()A. B. C. D.7.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形8.設,滿足,則的取值范圍是()A. B. C. D.9.已知函數則函數的圖象的對稱軸方程為()A. B.C. D.10.達芬奇的經典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數百年來讓無數觀賞者人迷.某業余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數據:(其中).根據測量得到的結果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角大約等于()A. B. C. D.11.若復數(為虛數單位),則()A. B. C. D.12.已知是定義在上的奇函數,且當時,.若,則的解集是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數在處的切線與直線平行,則為________.14.設全集,,,則______.15.設實數,若函數的最大值為,則實數的最大值為______.16.已知數列的各項均為正數,記為的前n項和,若,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.18.(12分)自湖北武漢爆發新型冠狀病毒惑染的肺炎疫情以來,武漢醫護人員和醫療、生活物資嚴重缺乏,全國各地紛紛馳援.截至1月30日12時,湖北省累計接收捐贈物資615.43萬件,包括醫用防護服2.6萬套N95口軍47.9萬個,醫用一次性口罩172.87萬個,護目鏡3.93萬個等.中某運輸隊接到給武漢運送物資的任務,該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送720t物資.已知每輛卡車每天往返的次數:A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運輸隊所花的成本最低?19.(12分)已知函數,其中.(Ⅰ)當時,求函數的單調區間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.20.(12分)在某社區舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數學期望.21.(12分)設函數,().(1)若曲線在點處的切線方程為,求實數a、m的值;(2)若對任意恒成立,求實數a的取值范圍;(3)關于x的方程能否有三個不同的實根?證明你的結論.22.(10分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數,屬于基礎題.2.D【解析】
做出函數的圖象,問題轉化為函數的圖象在有7個交點,而函數在上有3個交點,則在上有4個不同的交點,數形結合即可求解.【詳解】作出函數的圖象如圖所示,由圖可知方程在上有3個不同的實數根,則在上有4個不同的實數根,當直線經過時,;當直線經過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數根.故選:D.本題考查方程根的個數求參數,利用函數零點和方程之間的關系轉化為兩個函數的交點是解題的關鍵,運用數形結合是解決函數零點問題的基本思想,屬于中檔題.3.B【解析】
滿足(1)(2)的函數是偶函數且值域關于原點對稱,分別對所給函數進行驗證.【詳解】滿足(1)(2)的函數是偶函數且值域關于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.本題考查新定義函數的問題,涉及到函數的性質,考查學生邏輯推理與分析能力,是一道容易題.4.C【解析】
利用等差通項,設出和,然后,直接求解即可【詳解】令,則,,∴,,∴.本題考查等差數列的求和問題,屬于基礎題5.D【解析】
先求出的值域,再利用導數討論函數在區間上的單調性,結合函數值域,由方程有兩個根求參數范圍即可.【詳解】因為,故,當時,,故在區間上單調遞減;當時,,故在區間上單調遞增;當時,令,解得,故在區間單調遞減,在區間上單調遞增.又,且當趨近于零時,趨近于正無窮;對函數,當時,;根據題意,對,且,使得成立,只需,即可得,解得.故選:D.本題考查利用導數研究由方程根的個數求參數范圍的問題,涉及利用導數研究函數單調性以及函數值域的問題,屬綜合困難題.6.B【解析】
列出每一次循環,直到計數變量滿足退出循環.【詳解】第一次循環:;第二次循環:;第三次循環:,退出循環,輸出的為.故選:B.本題考查由程序框圖求輸出的結果,要注意在哪一步退出循環,是一道容易題.7.C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.8.C【解析】
首先繪制出可行域,再繪制出目標函數,根據可行域范圍求出目標函數中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數在點處取得最小值,故目標函數的最小值為,故的取值范圍是.故選:D.本題主要考查了線性規劃中目標函數的取值范圍的問題,屬于基礎題.9.C【解析】
,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.本題考查余弦型函數的對稱性的問題,在處理余弦型函數的性質時,一般采用整體法,結合三角函數的性質,是一道容易題.10.A【解析】
由已知,設.可得.于是可得,進而得出結論.【詳解】解:依題意,設.則.,.設《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角為.則,.故選:A.本題考查了直角三角形的邊角關系、三角函數的單調性、切線的性質,考查了推理能力與計算能力,屬于中檔題.11.B【解析】
根據復數的除法法則計算,由共軛復數的概念寫出.【詳解】,,故選:B本題主要考查了復數的除法計算,共軛復數的概念,屬于容易題.12.B【解析】
利用函數奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【詳解】為定義在上的奇函數,.當時,,,為奇函數,,由得:或;綜上所述:若,則的解集為.故選:.本題考查函數奇偶性的應用,涉及到利用函數奇偶性求解對稱區間的解析式;易錯點是忽略奇函數在處有意義時,的情況.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據題意得出,由此可得出實數的值.【詳解】,,直線的斜率為,由于函數在處的切線與直線平行,則.故答案為:.本題考查利用函數的切線與直線平行求參數,解題時要結合兩直線的位置關系得出兩直線斜率之間的關系,考查計算能力,屬于基礎題.14.【解析】
先求出集合,,然后根據交集、補集的定義求解即可.【詳解】解:,或;∴;∴.故答案為:.本題主要考查集合的交集、補集運算,屬于基礎題.15.【解析】
根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.16.127【解析】
已知條件化簡可化為,等式兩邊同時除以,則有,通過求解方程可解得,即證得數列為等比數列,根據已知即可解得所求.【詳解】由..故答案為:.本題考查通過遞推公式證明數列為等比數列,考查了等比的求和公式,考查學生分析問題的能力,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見證明;(2)【解析】
(1)根據面面垂直的性質得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設,利用椎體的體積公式求得,利用導數研究函數的單調性,從而求得時,四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因為,平面平面,平面平面,平面,所以平面,因為平面,所以.因為,所以,所以,因為,所以平面.(2)解:設,則,四面體的體積.,當時,,單調遞增;當時,,單調遞減.故當時,四面體的體積取得最大值.以為坐標原點,建立空間直角坐標系,則,,,,.設平面的法向量為,則,即,令,得,同理可得平面的一個法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.該題考查的是有關立體幾何的問題,涉及到的知識點有面面垂直的性質,線面垂直的判定,椎體的體積,二面角的求法,在解題的過程中,注意巧用導數求解體積的最大值.18.每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低【解析】
設每天派出A型卡車輛,則派出B型卡車輛,由題意列出約束條件,作出可行域,求出使目標函數取最小值的整數解,即可得解.【詳解】設每天派出A型卡車輛,則派出B型卡車輛,運輸隊所花成本為元,由題意可知,,整理得,目標函數,如圖所示,為不等式組表示的可行域,由圖可知,當直線經過點時,最小,解方程組,解得,,然而,故點不是最優解.因此在可行域的整點中,點使得取最小值,即,故每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低.本題考查了線性規劃問題中的最優整數解問題,考查了數形結合的思想,解題關鍵在于列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數,同時注意整點的選取,屬于中檔題.19.(Ⅰ)函數的單調增區間為,單調減區間為;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)利用二次求導可得,所以在上為增函數,進而可得函數的單調增區間為,單調減區間為;(Ⅱ)利用導數可得在區間上存在唯一零點,所以函數在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構造函數,利用導數可得的單調性,即可得到的最小值為,再次構造函數(a),,利用導數得其單調區間,進而求得最大值.【詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數,因為,所以當時,,為增函數,當時,,為減函數,即函數的單調增區間為,單調減區間為;(Ⅱ),則令,則(1),,所以在區間上存在唯一零點,設零點為,則,且,當時,,當,,,所以函數在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒成立,即對于恒成立,不妨令,因為,,所以的解為,則當時,,為增函數,當時,,為減函數,所以的最小值為,則,不妨令(a),,則(a),解得,所以當時,(a),(a)為增函數,當時,(a),(a)為減函數,所以(a)的最大值為,則的最大值為.本題考查利用導數研究函數的單調性和最值,以及函數不等式恒成立問題的解法,意在考查學生等價轉化思想和數學運算能力,屬于較難題.20.(1)(2)詳見解析【解析】
(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據相互獨立事件概率計算公式,計算出分布列并求得數學期望.【詳解】(1)由題意,當家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,所以要想領取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)本小題考查概率,分布列,數學期望等概率與統計的基礎知識;考查運算求解能力,推理論證能力,數據處理,應用意識.21.(1),;(2);(3)不能,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 華北理工大學冀唐學院《科研論文寫作》2023-2024學年第一學期期末試卷
- 平頂山工業職業技術學院《高級微生物》2023-2024學年第二學期期末試卷
- 長春東方職業學院《商務英語視聽說IV》2023-2024學年第二學期期末試卷
- 四川電影電視學院《節奏與打擊樂基礎訓練》2023-2024學年第二學期期末試卷
- 山西運城市運康中學2025年初三預測密卷(新課標II卷)英語試題試卷含答案
- 長沙商貿旅游職業技術學院《醫學寄生蟲學檢驗技術》2023-2024學年第一學期期末試卷
- 內江市2025年五下數學期末達標檢測試題含答案
- 天津市七校靜海一中楊村中學2025年高三下學期第一次摸底考試語文試題理試卷含解析
- 山西省大學附屬中學2025屆高三全真模擬生物試題含解析
- 四川省內江市資中縣市級名校2024-2025學年初三摸底聯考生物試題試卷含解析
- 【字節跳動盈利模式和核心競爭力探析(論文)12000字】
- 期中測試卷(試題)2024-2025學年三年級上冊數學人教版
- 機器的征途:空天科技學習通超星期末考試答案章節答案2024年
- 培訓學校應急管理機構及突發事件應急預案
- 學校內控工作小組成立方案
- 北師大版(2024新版)七年級上冊數學第四章《基本平面圖形》測試卷(含答案解析)
- 新中國成立75周年農業發展成就課件(含講稿)
- ASTM-D3359-(附著力測試標準)-中文版
- 教學設計初中英語課的口語情景演練與表達訓練
- 寵物醫院保潔合同
- 新解讀《JTG 2112-2021城鎮化地區公路工程技術標準》
評論
0/150
提交評論