




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年昆明市云南師范大實驗中學初三下學期4月月考(三)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知二次函數y=ax2+bx的圖象與正比例函數y=kx的圖象相交于點A(1,2),有下面四個結論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④2.已知函數y=ax2+bx+c的圖象如圖所示,則關于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數根 B.有兩個異號的實數根C.有兩個不相等的實數根 D.沒有實數根3.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.4.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數是A. B. C. D.5.如圖,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為()A.O1 B.O2 C.O3 D.O46.如圖,若△ABC內接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.7.某校舉行運動會,從商場購買一定數量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數量與用350元購買筆袋的數量相同.設每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.8.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.89.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數的圖象與有交點,則的取值范圍是().A. B. C. D.10.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數是()A.15° B.22.5° C.30° D.45°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.12.已知一個圓錐體的底面半徑為2,母線長為4,則它的側面展開圖面積是___.(結果保留π)13.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.14.函數y=中,自變量x的取值范圍是_________.15.如圖,小明想用圖中所示的扇形紙片圍成一個圓錐,已知扇形的半徑為5cm,弧長是cm,那么圍成的圓錐的高度是cm.16.如圖,在平面直角坐標系中,反比例函數y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.17.如圖,矩形ABCD,AB=2,BC=1,將矩形ABCD繞點A順時針旋轉90°得矩形AEFG,連接CG、EG,則∠CGE=________.三、解答題(共7小題,滿分69分)18.(10分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽.從中抽取了部分學生成績(得分數取正整數,滿分為100分)進行統計,繪制統計頻數分布直方圖(未完成)和扇形圖如下,請解答下列問題:(1)A組的頻數a比B組的頻數b小24,樣本容量,a為:(2)n為°,E組所占比例為%:(3)補全頻數分布直方圖;(4)若成績在80分以上優秀,全校共有2000名學生,估計成績優秀學生有名.19.(5分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數軸的正半軸上運動,點B在數軸上所表示的數為m.當半圓D與數軸相切時,m=.半圓D與數軸有兩個公共點,設另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.20.(8分)如圖,已知⊙O,請用尺規做⊙O的內接正四邊形ABCD,(保留作圖痕跡,不寫做法)21.(10分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.22.(10分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大小;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.23.(12分)為響應學校全面推進書香校園建設的號召,班長李青隨機調查了若干同學一周課外閱讀的時間(單位:小時),將獲得的數據分成四組,繪制了如下統計圖(:,:,:,:),根據圖中信息,解答下列問題:(1)這項工作中被調查的總人數是多少?(2)補全條形統計圖,并求出表示組的扇形統計圖的圓心角的度數;(3)如果李青想從組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發言代表,請用列表或畫樹狀圖的方法求出選中甲的概率.24.(14分)M中學為創建園林學校,購買了若干桂花樹苗,計劃把迎賓大道的一側全部栽上桂花樹(兩端必須各栽一棵),并且每兩棵樹的間隔相等,如果每隔5米栽1棵,則樹苗缺11棵;如果每隔6米栽1棵,則樹苗正好用完,求購買了桂花樹苗多少棵?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據拋物線圖象性質確定a、b符號,把點A代入y=ax2+bx得到a與b數量關系,代入②,不等式kx≤ax2+bx的解集可以轉化為函數圖象的高低關系.【詳解】解:根據圖象拋物線開口向上,對稱軸在y軸右側,則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.二次函數的圖像,sinα公式,不等式的解集.2、A【解析】
根據拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數y=ax2+bx+c的圖象與直線y=4交點的情況.【詳解】∵函數的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數根,故選A.本題考查了二次函數與一元二次方程,熟練掌握一元二次方程與二次函數間的關系是解題的關鍵.3、B【解析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.
故選B.4、A【解析】分析:首先求出∠AEB,再利用三角形內角和定理求出∠B,最后利用平行四邊形的性質得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質、平行四邊形的性質、三角形內角和定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考常考題型.5、A【解析】試題分析:因為A點坐標為(-4,2),所以,原點在點A的右邊,也在點A的下邊2個單位處,從點B來看,B(2,-4),所以,原點在點B的左邊,且在點B的上邊4個單位處.如下圖,O1符合.考點:平面直角坐標系.6、D【解析】
延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據銳角三角函數的定義得BC=R.【詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.此題綜合運用了圓周角定理、直角三角形30°角的性質、勾股定理,注意:作直徑構造直角三角形是解決本題的關鍵.7、B【解析】試題分析:設每個筆記本的價格為x元,根據“用200元購買筆記本的數量與用350元購買筆袋的數量相同”這一等量關系列出方程即可.考點:由實際問題抽象出分式方程8、B【解析】
連接OP、OA,根據垂徑定理求出AQ,根據勾股定理求出OQ,計算即可.【詳解】解:由題意得,當點P為劣弧AB的中點時,PQ最小,
連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關鍵.9、D【解析】設直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.10、A【解析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.12、8π【解析】
根據圓錐的側面積=底面周長×母線長÷2公式即可求出.【詳解】∵圓錐體的底面半徑為2,∴底面周長為2πr=4π,∴圓錐的側面積=4π×4÷2=8π.故答案為:8π.靈活運用圓的周長公式和扇形面積公式.13、1【解析】
根據相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.本題考查的是相似三角形的性質,掌握相似三角形的對應邊的比相等是解題的關鍵.14、x≤1且x≠﹣1【解析】
由二次根式中被開方數為非負數且分母不等于零求解可得結論.【詳解】根據題意,得:,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.本題考查了函數自變量的取值范圍,函數自變量的范圍一般從三個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(1)當函數表達式是分式時,考慮分式的分母不能為0;(3)當函數表達式是二次根式時,被開方數非負.15、4【解析】
已知弧長即已知圍成的圓錐的底面半徑的長是6πcm,這樣就求出底面圓的半徑.扇形的半徑為5cm就是圓錐的母線長是5cm.就可以根據勾股定理求出圓錐的高.【詳解】設底面圓的半徑是r,則2πr=6π,∴r=3cm,∴圓錐的高==4cm.故答案為4.16、1【解析】
連接OB,由矩形的性質和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.本題考查了反比例函數的系數k的幾何意義:在反比例函數y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.17、45°【解析】試題解析:如圖,連接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案為三、解答題(共7小題,滿分69分)18、(1)200;16(2)126;12%(3)見解析(4)940【解析】分析:(1)由于A組的頻數比B組小24,而A組的頻率比B組小12%,則可計算出調查的總人數,然后計算a和b的值;(2)用360度乘以D組的頻率可得到n的值,根據百分比之和為1可得E組百分比;(3)計算出C和E組的頻數后補全頻數分布直方圖;(4)利用樣本估計總體,用2000乘以D組和E組的頻率和即可.本題解析:()調查的總人數為,∴,,()部分所對的圓心角,即,組所占比例為:,()組的頻數為,組的頻數為,補全頻數分布直方圖為:(),∴估計成績優秀的學生有人.點睛:本題考查了頻數(率)分布直方圖:提高讀頻數分布直方圖的能力和利用統計圖獲取信息的能力;利用統計圖獲取信息時,要認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題,也考查了用樣本估計總體.19、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】
(1)根據題意由勾股定理即可解答(2)①根據題意可知半圓D與數軸相切時,只有一個公共點,和當O、A、B三點在數軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據題意如圖1,當OB=AB時,內心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答如圖2,當OB=OA時,內心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答【詳解】(1)當半圓與數軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數軸相切時,只有一個公共點,此時m=,當O、A、B三點在數軸上時,m=7+4=11,∴半圓D與數軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當OB=AB時,內心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當OB=OA時,內心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.綜合以上,可得tan∠AOB的值為或.此題此題考勾股定理,切線的性質,等邊三角形的判定和性質,三角形的內心和外心,解題關鍵在于作輔助線20、見解析【解析】
根據內接正四邊形的作圖方法畫出圖,保留作圖痕跡即可.【詳解】任作一條直徑,再作該直徑的中垂線,順次連接圓上的四點即可.此題重點考察學生對圓內接正四邊形作圖的應用,掌握圓內接正四邊形的作圖方法是解題的關鍵.21、證明見試題解析.【解析】試題分析:首先根據∠ACD=∠BCE得出∠ACB=∠DCE,結合已知條件利用SAS判定△ABC和△DEC全等,從而得出答案.試題解析:∵∠ACD=∠BCE∴∠ACB=∠DCE又∵AC=DCBC=EC∴△ABC≌△DEC∴∠A=∠D考點:三角形全等的證明22、(1)∠D=32°;(2)①BE=;②【解析】
(Ⅰ)連接OC,CD為切線,根據切線的性質可得∠OCD=90°,根據圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據直角三角形的性質可得∠D的大小.(Ⅱ)①根據∠D=30°,得到∠DOC=60°,根據∠BAO=15°,可以得出∠AOB=150°,進而證明△OBC為等腰直角三角形,根據等腰直角三角形的性質得出根據圓周角定理得出根據含角的直角三角形的性質即可求出BE的長;②根據四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進行計算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=9
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年工程經濟前沿知識試題及答案
- 工程項目中經濟性評價的重要指標試題及答案
- 經濟法概論考試題型探索試題及答案
- 2025年部門級安全培訓考試試題及答案(典優)
- 精準備考2025年中級經濟師的試題及答案
- 2025-2030年銀杏茶葉市場市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030年花生行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030年禽畜飼料行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025年經濟法概論考試常見類型與試題及答案
- 2025-2030年滅菌乳行業市場深度分析及前景趨勢與投資研究報告
- 人教版(2024)七年級數學上冊舉一反三系列專題2.5科學記數法與近似數【八大題型】(學生版+解析)
- 人教版二年級下冊數學-家長會-課件
- 4:氣質類型問卷測試
- 2023年湖北數學高考卷-理科(含答案)
- 政務服務附有答案
- 傳統園林技藝智慧樹知到期末考試答案章節答案2024年華南農業大學
- 店長入股門店合同范本
- 《湖南省職工基本醫療保險門診慢特病基礎用藥指南(第一批)》
- 醫院護理不良事件報告表
- 湖北省武漢市漢陽區2023-2024學年七年級下學期期末數學試題
- 海上風電場數據融合與智能化
評論
0/150
提交評論