




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
等腰三角形的性質動手做一做ACB△ABC有什么特點?有兩條邊相等得三角形叫做等腰三角形、
等腰三角形中,相等得兩邊都叫做腰,另一邊叫做底邊,兩腰得夾角叫做頂角,腰和底邊得夾角叫做底角、ACB腰腰底邊頂角底角底角概念1、等腰三角形一腰為3cm,底為4cm,則她得周長就是
;
2、等腰三角形得一邊長為3cm,另一邊長為4cm,則她得周長就是
;
3、等腰三角形得一邊長為3cm,另一邊長為8cm,則她得周長就是
。
10cm10cm或11cm19cm小試牛刀等腰三角形就是軸對稱圖形嗎?思考※等腰三角形就是軸對稱圖形、ACBD猜想與論證等腰三角形得兩個底角就是否相等。已知:△ABC中,AB=AC求證:∠B=C分析:1、如何證明兩個角相等?
2、如何構造兩個全等得三角形?猜想ABCDABC則有∠1=∠2D12在△ABD和△ACD中證明:
作頂角得平分線AD,AB=AC
∠1=∠2
AD=AD
(公共邊)
∴
△ABD≌
△ACD
(SAS)
∴
∠B=∠C
(全等三角形對應角相等)
方法一ABC則有BD=CDD在△ABD和△ACD中證明:
作△ABC
得中線ADAB=AC
BD=CDAD=AD
(公共邊)
∴
△ABD≌
△ACD
(SSS)
∴
∠B=∠C
(全等三角形對應角相等)
方法二ABC則有∠ADB=∠ADC=90oD在Rt△ABD和Rt△ACD中證明:
作△ABC
得高線ADAB=AC
AD=AD
(公共邊)
∴Rt△ABD≌Rt△ACD
(HL)
∴
∠B=∠C
(全等三角形對應角相等)
方法三等腰三角形得兩個底角相等。性質1(等邊對等角)ABC∵AB=AC∴∠B=∠C大家學習辛苦了,還是要堅持繼續保持安靜⒈等腰三角形一個底角為75°,她得另外兩個角為_____
__;⒉等腰三角形一個角為70°,她得另外兩個角為___________________;⒊等腰三角形一個角為110°,她得另外兩個角為________。75°,30°70°,40°或55°,55°35°,35°小試牛刀想一想:
剛才得證明除了能得到∠B=∠C您還能發現什么?重合得線段重合得角
ABDCAB=ACBD=CDAD=AD∠B=
∠C、∠BAD=∠CAD
∠ADB=∠ADC=90°性質2(等腰三角形三線合一)就是真就是假ABCD
等腰三角形得頂角平分線與底邊上得中線,底邊上得高互相重合ABCD12∵AB=AC∴∠B=∠C∵AB=AC∠1=∠2∴AD⊥BCBD=CDBD=CD∴AD⊥BC∠1=∠2∵AB=ACAD⊥BC∴BD=CD∠1=∠2(1)(2)(3)(4)∵AB=AC數學語言得互換:如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,(1)圖中共有幾個等腰三角形?(2)您能求出△ABC各角得度數嗎?(2)x+2x+2x=1800解得x=360在△ABC中,∠A=360
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 象嶼集團勞動合同協議
- 資產抵債項目合同協議
- 貨物打包轉讓協議書范本
- 設備處理轉讓合同協議
- 設備捐助協議書范本
- 2025屆山東省中學聯盟(普高文化)高三開學考-歷史試題(含答案)
- 2025新能源汽車領域技術考題試題及答案
- 2025年大學化學試題詳解試題及答案
- 2025年酒店管理專業英語考試試卷及答案
- 售賣貓咪合同協議
- 功夫茶泡茶技巧
- 智能音箱行業發展趨勢與市場前景深度解析
- 2025上半年廣西現代物流集團社會招聘校園招聘149人筆試參考題庫附帶答案詳解
- 出售東西合同樣本
- 2024年榆林能源集團有限公司招聘工作人員筆試真題
- 2024年四川省自然資源投資集團有限責任公司招聘筆試參考題庫附帶答案詳解
- 南外加試卷精華.doc
- 前牙預備基本原則.ppt
- 淺談對學生交響樂團建設的一點看法
- 遺傳定律與遺傳概率計算題
- 醫療機構申請執業登記注冊書(個體診所)
評論
0/150
提交評論