




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省撫州市臨川一中2024-2025學年高三5月總復習質檢(二模)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列四個圖象可能是函數圖象的是()A. B. C. D.2.已知集合,,則()A. B. C. D.3.在正項等比數列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.84.已知定義在上的函數滿足,且當時,.設在上的最大值為(),且數列的前項的和為.若對于任意正整數不等式恒成立,則實數的取值范圍為()A. B. C. D.5.已知向量,,若,則()A. B. C.-8 D.86.下列判斷錯誤的是()A.若隨機變量服從正態分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件7.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.8.如圖是甲、乙兩位同學在六次數學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數和乙相等9.等差數列中,已知,且,則數列的前項和中最小的是()A.或 B. C. D.10.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象11.在一個數列中,如果,都有(為常數),那么這個數列叫做等積數列,叫做這個數列的公積.已知數列是等積數列,且,,公積為,則()A. B. C. D.12.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知多項式的各項系數之和為32,則展開式中含項的系數為______.14.已知函數若關于的不等式的解集是,則的值為_____.15.的展開式中項的系數為_______.16.在中,點在邊上,且,設,,則________(用,表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓,直線經過點,直線經過點,直線直線,且直線分別與橢圓相交于兩點和兩點.(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.18.(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數),求曲線交點的直角坐標.19.(12分)如圖,在四棱錐中,底面是直角梯形且∥,側面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大小;(2)若,且直線與平面所成角為,求的值.20.(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.21.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.22.(10分)已知數列的各項均為正數,為其前n項和,對于任意的滿足關系式.(1)求數列的通項公式;(2)設數列的通項公式是,前n項和為,求證:對于任意的正數n,總有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
首先求出函數的定義域,其函數圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數,即可得到函數圖象關于對稱,即可排除A、D,再根據時函數值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數,圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C本題考查函數的性質與識圖能力,一般根據四個選擇項來判斷對應的函數性質,即可排除三個不符的選項,屬于中檔題.2.B【解析】
求出集合,利用集合的基本運算即可得到結論.【詳解】由,得,則集合,所以,.故選:B.本題主要考查集合的基本運算,利用函數的性質求出集合是解決本題的關鍵,屬于基礎題.3.B【解析】
根據題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.本題考查了等比數列的計算,意在考查學生的計算能力.4.C【解析】
由已知先求出,即,進一步可得,再將所求問題轉化為對于任意正整數恒成立,設,只需找到數列的最大值即可.【詳解】當時,則,,所以,,顯然當時,,故,,若對于任意正整數不等式恒成立,即對于任意正整數恒成立,即對于任意正整數恒成立,設,,令,解得,令,解得,考慮到,故有當時,單調遞增,當時,有單調遞減,故數列的最大值為,所以.故選:C.本題考查數列中的不等式恒成立問題,涉及到求函數解析、等比數列前n項和、數列單調性的判斷等知識,是一道較為綜合的數列題.5.B【解析】
先求出向量,的坐標,然后由可求出參數的值.【詳解】由向量,,則,,又,則,解得.故選:B本題考查向量的坐標運算和模長的運算,屬于基礎題.6.D【解析】
根據正態分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態分布,根據正態分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D本題考查正態分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,考查理解辨析能力與運算求解能力,屬于基礎題.7.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D本題主要考查了橢圓的定義,橢圓標準方程的求解.8.B【解析】
由平均數、方差公式和極差、中位數概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數為,乙得分的中位數為,故正確.故選:.本題考查莖葉圖的應用,考查平均數和方差等概念,培養計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.9.C【解析】
設公差為,則由題意可得,解得,可得.令
,可得
當時,,當時,,由此可得數列前項和中最小的.【詳解】解:等差數列中,已知,且,設公差為,
則,解得
,.
令
,可得,故當時,,當時,,
故數列前項和中最小的是.故選:C.本題主要考查等差數列的性質,等差數列的通項公式的應用,屬于中檔題.10.D【解析】
利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.11.B【解析】
計算出的值,推導出,再由,結合數列的周期性可求得數列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.本題考查數列求和,考查了數列的新定義,推導出數列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.12.C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C本小題主要考查雙曲線的漸近線方程,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
令可得各項系數和為,得出,根據第一個因式展開式的常數項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數項的積的和即為展開式中含項,可得解.【詳解】令,則得,解得,所以展開式中含項為:,故答案為:本題主要考查了二項展開式的系數和,二項展開式特定項,賦值法,屬于中檔題.14.【解析】
根據題意可知的兩根為,再根據解集的區間端點得出參數的關系,再求解即可.【詳解】解:因為函數,關于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:本題主要考查了不等式的解集與參數之間的關系,屬于基礎題.15.40【解析】
根據二項定理展開式,求得r的值,進而求得系數.【詳解】根據二項定理展開式的通項式得所以,解得所以系數本題考查了二項式定理的簡單應用,屬于基礎題.16.【解析】
結合圖形及向量的線性運算將轉化為用向量表示,即可得到結果.【詳解】在中,因為,所以,又因為,所以.故答案為:本題主要考查三角形中向量的線性運算,關鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉化.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)不能,證明見解析【解析】
(Ⅰ)計算得到故,,,,計算得到面積.(Ⅱ)設為,聯立方程得到,計算,同理,根據得到,得到證明.(Ⅲ)設中點為,根據點差法得到,同理,故,得到結論.【詳解】(Ⅰ),,故,,,.故四邊形的面積為.(Ⅱ)設為,則,故,設,,故,,同理可得,,故,即,,故.(Ⅲ)設中點為,則,,相減得到,即,同理可得:的中點,滿足,故,故四邊形不能為矩形.本題考查了橢圓內四邊形的面積,形狀,根據四邊形形狀求參數,意在考查學生的計算能力和綜合應用能力.18.【解析】
利用極坐標方程與普通方程、參數方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標為.本題考查極坐標方程與普通方程,參數方程與普通方程間的互化,考查學生的計算能力,是一道容易題.19.(1);(2).【解析】
(1)分別取的中點為,易得兩兩垂直,以所在直線為軸建立空間直角坐標系,易得為平面的法向量,只需求出平面的法向量為,再利用計算即可;(2)求出,利用計算即可.【詳解】(1)分別取的中點為,連結.因為∥,所以∥.因為,所以.因為側面為等邊三角形,所以又因為平面平面,平面平面,平面,所以平面,所以兩兩垂直.以為空間坐標系的原點,分別以所在直線為軸建立如圖所示的空間直角坐標系,因為,則,,.設平面的法向量為,則,即.取,則,所以.又為平面的法向量,設平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直線與平面所成角為,所以,即,即,化簡得,所以,符合題意.本題考查利用向量坐標法求面面角、線面角,涉及到面面垂直的性質定理的應用,做好此類題的關鍵是準確寫出點的坐標,是一道中檔題.20.(Ⅰ)證明見詳解;(Ⅱ).【解析】
(Ⅰ)取中點為,根據幾何關系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標原點,建立空間直角坐標系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因為,且平面,故可以為原點,的方向為軸正方向建立如圖所示的空間直角坐標系,如下圖所示:不妨設,則,所以,,,,.所以,,.設平面的法向量為,則所以可取.設直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.21.(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補形法,取的中點為,連接,可結合等腰三角形性質和線面垂直性質,先證平面,即,若能證明,則可得證,可通過我們反推出點對應位置應在處,進而得證;(Ⅱ)采用建系法,以為坐標原點,以分別為軸建立空間直角坐標系,分別求出兩平面對應法向量,再結合向量夾角公式即可求解;【詳解】(Ⅰ)存在點滿足題意,且.證明如下:取的中點為,連接.則,所以平面.因為是的中點,所以.在直三棱柱中,平面平面,且交線為,所以平面,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育與健康的雙重價值關于教育的數字健體臺的設計研究
- 語文課外拓展活動與備考計劃
- 初中美術教育改革實施計劃
- 2024-2025學年第二學期小學語文跨學科教學計劃
- 部編本五年級語文課堂管理計劃
- 智慧城市房地產項目規劃計劃
- 初中班級班主任培訓與發展計劃
- 基于大數據的數字化教育創新研究與應用前景探索
- 幼兒園暑假班心理健康計劃
- 2024-2025小學藝術教育發展計劃
- 水庫除險加固工程設計(畢業設計)
- 魚缸定做合同
- 2024-2030年中國凈水器行業市場深度調研及發展趨勢與投資前景研究報告
- GB/T 9799-2024金屬及其他無機覆蓋層鋼鐵上經過處理的鋅電鍍層
- 置換合同模板
- 江蘇省南京市秦淮區2023-2024學年七年級下學期期末考試語文試題
- DL-T5190.1-2022電力建設施工技術規范第1部分:土建結構工程
- 教師語言與溝通藝術智慧樹知到期末考試答案章節答案2024年溫州大學
- 河南省2022-2023學年七年級下學期語文期末試卷(含答案)
- 新人教版七年級數學上冊期末測試卷及答案【全面】
- 施工現場火災應急處置方案
評論
0/150
提交評論