湖北小池濱江高級中學2024屆高三下學期第四次(1月)月考數學試題試卷_第1頁
湖北小池濱江高級中學2024屆高三下學期第四次(1月)月考數學試題試卷_第2頁
湖北小池濱江高級中學2024屆高三下學期第四次(1月)月考數學試題試卷_第3頁
湖北小池濱江高級中學2024屆高三下學期第四次(1月)月考數學試題試卷_第4頁
湖北小池濱江高級中學2024屆高三下學期第四次(1月)月考數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北小池濱江高級中學2023屆高三下學期第四次(1月)月考數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數滿足,則()A. B. C.2 D.2.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區進行幫扶活動,每人只能去一個社區,每個社區至少一人.其中甲必須去社區,乙不去社區,則不同的安排方法種數為()A.8 B.7 C.6 D.53.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-34.設集合(為實數集),,,則()A. B. C. D.5.設函數,則函數的圖像可能為()A. B. C. D.6.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.7.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.8.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②9.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.10.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.11.若復數在復平面內對應的點在第二象限,則實數的取值范圍是()A. B. C. D.12.已知點(m,8)在冪函數的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b二、填空題:本題共4小題,每小題5分,共20分。13.若變量x,y滿足:,且滿足,則參數t的取值范圍為_______.14.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸的概率是_____.15.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.16.在長方體中,,,,為的中點,則點到平面的距離是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)討論的單調性;(2)當時,證明:.18.(12分)已知函數.(1)當時,求函數的值域.(2)設函數,若,且的最小值為,求實數的取值范圍.19.(12分)設點,動圓經過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.20.(12分)在中,角,,所對的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.21.(12分)已知在中,角、、的對邊分別為,,,,.(1)若,求的值;(2)若,求的面積.22.(10分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數的值;(2)設線段的中點為,其中為坐標原點,若,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

把已知等式變形,利用復數代數形式的乘除運算化簡,再由復數模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法.2.B【解析】根據題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.3.D【解析】分析:根據平面向量的數量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數量積以及投影的應用問題,也考查了數形結合思想的應用問題.4.A【解析】

根據集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎題.5.B【解析】

根據函數為偶函數排除,再計算排除得到答案.【詳解】定義域為:,函數為偶函數,排除,排除故選【點睛】本題考查了函數圖像,通過函數的單調性,奇偶性,特殊值排除選項是常用的技巧.6.A【解析】

畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.7.D【解析】

可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.8.C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.9.A【解析】

本道題繪圖發現三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.10.D【解析】

由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數形結合的解題思想方法,考查思維能力與計算能力,屬于中檔題.11.B【解析】

復數,在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.12.B【解析】

先利用冪函數的定義求出m的值,得到冪函數解析式為f(x)=x3,在R上單調遞增,再利用冪函數f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數f(x)=xn上,∴2n=8,∴n=3,∴冪函數解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數的性質,以及利用函數的單調性比較函數值大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據變量x,y滿足:,畫出可行域,由,解得直線過定點,直線繞定點旋轉與可行域有交點即可,再結合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當時,滿足條件,當時,直線得斜率應該不小于AC,而不大于AB,即或,解得,且,綜上:參數t的取值范圍為.故答案為:【點睛】本題主要考查線性規劃的應用,還考查了轉化運算求解的能力,屬于中檔題.14.【解析】乙不輸的概率為,填.15.【解析】

方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設,則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.16.【解析】

利用等體積法求解點到平面的距離【詳解】由題在長方體中,,,所以,所以,設點到平面的距離為,解得故答案為:【點睛】此題考查求點到平面的距離,通過在三棱錐中利用等體積法求解,關鍵在于合理變換三棱錐的頂點.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)見解析【解析】

(1)求導得,分類討論和,利用導數研究含參數的函數單調性;(2)根據(1)中求得的的單調性,得出在處取得最大值為,構造函數,利用導數,推出,即可證明不等式.【詳解】解:(1)由于,得,當時,,此時在上遞增;當時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設,則,令,則,則在單調遞減,∴,即,則在單調遞減∴,∴,∴.【點睛】本題考查利用導數研究函數的單調性和最值,涉及分類討論和構造新函數,通過導數證明不等式,考查轉化思想和計算能力.18.(1);(2).【解析】

(1)令,求出的范圍,再由指數函數的單調性,即可求出結論;(2)對分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關系,求出的值,進而求出的取值關系.【詳解】(1)當時,,令,∵∴,而是增函數,∴,∴函數的值域是.(2)當時,則在上單調遞減,在上單調遞增,所以的最小值為,在上單調遞增,最小值為,而的最小值為,所以這種情況不可能.當時,則在上單調遞減且沒有最小值,在上單調遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實數的取值范圍是.【點睛】本題考查復合函數的值域與分段函數的最值,熟練掌握二次函數圖像和性質是解題的關鍵,屬于中檔題.19.(1);(2)見解析.【解析】

(1)已知點軌跡是以為焦點,直線為準線的拋物線,由此可得曲線的方程;(2)設直線方程為,,則,設,由直線方程與拋物線方程聯立消元應用韋達定理得,,由,,用橫坐標表示出,然后計算,并代入,可得結論.【詳解】(1)設動圓圓心,由拋物線定義知:點軌跡是以為焦點,直線為準線的拋物線,設其方程為,則,解得.∴曲線的方程為;(2)證明:設直線方程為,,則,設,由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設而不求的思想方法,即設交點坐標,設直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應用韋達定理得,,代入題中其他條件所求式子中化簡變形.20.(1);(2)【解析】

(1)利用正弦定理邊化角,結合兩角和差正弦公式可整理求得,進而求得和,代入求得結果;(2)利用正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據正弦型函數值域的求解方法,結合的范圍可求得結果.【詳解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范圍為【點睛】本題考查解三角形知識的相關應用,涉及到正弦定理邊化角的應用、兩角和差正弦公式和輔助角公式的應用、與三角函數值域有關的取值范圍的求解問題;求解取值范圍的關鍵是能夠利用正弦定理將邊長的問題轉化為三角函數的問題,進而利用正弦型函數值域的求解方法求得結果.21.(1)7(2)14【解析】

(1)在中,,可得,結合正弦定理,即可求得答案;(2)根據余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點睛】本題主要考查了正弦定理和余弦定理解三角形,解題關鍵是掌握正弦定理邊化角,考查了分析能力和計算能力,屬于中檔題.22.(1)的值為或.(2)【解析】

(1)分類討論,當時,線段與拋物線沒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論